Non-Borel set in arbitrary metric spaceDerived Sets in arbitrary metric space$A subseteq (X,d)$ is compact....

What is the purpose of using a decision tree?

Do people actually use the word "kaputt" in conversation?

Why doesn't Gödel's incompleteness theorem apply to false statements?

Error in master's thesis, I do not know what to do

Are hand made posters acceptable in Academia?

What is the meaning of "You've never met a graph you didn't like?"

Turning a hard to access nut?

Hashing password to increase entropy

Reason why a kingside attack is not justified

Do I have to take mana from my deck or hand when tapping this card?

Is there any common country to visit for persons holding UK and Schengen visas?

What do the positive and negative (+/-) transmit and receive pins mean on Ethernet cables?

Center page as a whole without centering each element individually

How to get directions in deep space?

Started in 1987 vs. Starting in 1987

Output visual diagram of picture

Non-Borel set in arbitrary metric space

Make a Bowl of Alphabet Soup

Connection Between Knot Theory and Number Theory

Why is implicit conversion not ambiguous for non-primitive types?

Would this string work as string?

Showing mass murder in a kid's book

Why do Radio Buttons not fill the entire outer circle?

What can I do if I am asked to learn different programming languages very frequently?



Non-Borel set in arbitrary metric space


Derived Sets in arbitrary metric space$A subseteq (X,d)$ is compact. Which metric $p$ makes $(A times A,p)$ also compact and $d: (A times A,p) rightarrow [0,infty)$ continuous?Borel sets and measurabilityapproximate a Borel set by a continuousAn example of Lebesgue measurable set but not Borel measurable besides the “subset of Cantor set” example.A Borel subset of a topological spaceseparability of a metric spacetotally disconnected and non Borel set.What do metric spaces look like?How do we get the notion “Borel regular” measures?













1












$begingroup$


Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.










      share|cite|improve this question









      $endgroup$




      Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.







      real-analysis general-topology functional-analysis measure-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 5 hours ago









      Daniel LiDaniel Li

      752414




      752414






















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



          This result can be found in:
          Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



          In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
          $$
          d(x,y)=1, quad d(x,x)=d(y,y)=0.
          $$

          The Borel sigma algebra on this metric space is given by
          $$
          {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
          $$

          where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
            $endgroup$
            – DanielWainfleet
            22 mins ago





















          2












          $begingroup$

          Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



          In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154781%2fnon-borel-set-in-arbitrary-metric-space%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



            This result can be found in:
            Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



            In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
            $$
            d(x,y)=1, quad d(x,x)=d(y,y)=0.
            $$

            The Borel sigma algebra on this metric space is given by
            $$
            {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
            $$

            where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
              $endgroup$
              – DanielWainfleet
              22 mins ago


















            5












            $begingroup$

            Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



            This result can be found in:
            Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



            In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
            $$
            d(x,y)=1, quad d(x,x)=d(y,y)=0.
            $$

            The Borel sigma algebra on this metric space is given by
            $$
            {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
            $$

            where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
              $endgroup$
              – DanielWainfleet
              22 mins ago
















            5












            5








            5





            $begingroup$

            Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



            This result can be found in:
            Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



            In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
            $$
            d(x,y)=1, quad d(x,x)=d(y,y)=0.
            $$

            The Borel sigma algebra on this metric space is given by
            $$
            {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
            $$

            where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.






            share|cite|improve this answer











            $endgroup$



            Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



            This result can be found in:
            Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



            In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
            $$
            d(x,y)=1, quad d(x,x)=d(y,y)=0.
            $$

            The Borel sigma algebra on this metric space is given by
            $$
            {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
            $$

            where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 4 hours ago

























            answered 4 hours ago









            MartinMartin

            1,106917




            1,106917












            • $begingroup$
              +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
              $endgroup$
              – DanielWainfleet
              22 mins ago




















            • $begingroup$
              +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
              $endgroup$
              – DanielWainfleet
              22 mins ago


















            $begingroup$
            +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
            $endgroup$
            – DanielWainfleet
            22 mins ago






            $begingroup$
            +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
            $endgroup$
            – DanielWainfleet
            22 mins ago













            2












            $begingroup$

            Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



            In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



              In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



                In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






                share|cite|improve this answer









                $endgroup$



                Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



                In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 3 hours ago









                Noah SchweberNoah Schweber

                127k10151290




                127k10151290






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154781%2fnon-borel-set-in-arbitrary-metric-space%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    As a Security Precaution, the user account has been locked The Next CEO of Stack OverflowMS...

                    Список ссавців Італії Природоохоронні статуси | Список |...

                    Українські прізвища Зміст Історичні відомості |...