Phase of a real number The Next CEO of Stack OverflowWhat is the difference between phase...

Why didn't Khan get resurrected in the Genesis Explosion?

Why do airplanes bank sharply to the right after air-to-air refueling?

How to solve a differential equation with a term to a power?

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Can I run my washing machine drain line into a condensate pump so it drains better?

Elegant way to replace substring in a regex with optional groups in Python?

Is it ever safe to open a suspicious html file (e.g. email attachment)?

What does convergence in distribution "in the Gromov–Hausdorff" sense mean?

Won the lottery - how do I keep the money?

Why do professional authors make "consistency" mistakes? And how to avoid them?

Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis

Does it take more energy to get to Venus or to Mars?

How do I transpose the 1st and -1th levels of an arbitrarily nested array?

Between two walls

What happened in Rome, when the western empire "fell"?

Contours of a clandestine nature

Interfacing a button to MCU (and PC) with 50m long cable

Can we say or write : "No, it'sn't"?

Inappropriate reference requests from Journal reviewers

Skipping indices in a product

Is micro rebar a better way to reinforce concrete than rebar?

sp_blitzCache results Memory grants

Are there any limitations on attacking while grappling?

Several mode to write the symbol of a vector



Phase of a real number



The Next CEO of Stack OverflowWhat is the difference between phase delay and group delay?How do you relate imaginary numbers with phase shift? How to imagine this?Phase factors for an 32 point fftbaffled by fft phase spectrum!How are phase values able to capture motion from video?In filter design, why isn't it possible to have a frequency response with phase 0?Extracting accurate phase and amplitude information from FFT with an arbitrary number of samplesContinuous phase for phase delay calculus in FIR filtersPhase spectrum of 2D real functionPlotting the Phase Response












1












$begingroup$


Could someone please explain in what case the phase of a real number is equal to -pi (and not pi)?



I know that for positive numbers, the phase is zero. For zero, we define the phase as zero as well. And for negative numbers, the phase would be pi. But I was reading some script and there it says the phase of a real number is either 0, pi, or -pi.










share|improve this question









$endgroup$












  • $begingroup$
    do you know about phase unwrapping?
    $endgroup$
    – robert bristow-johnson
    4 hours ago


















1












$begingroup$


Could someone please explain in what case the phase of a real number is equal to -pi (and not pi)?



I know that for positive numbers, the phase is zero. For zero, we define the phase as zero as well. And for negative numbers, the phase would be pi. But I was reading some script and there it says the phase of a real number is either 0, pi, or -pi.










share|improve this question









$endgroup$












  • $begingroup$
    do you know about phase unwrapping?
    $endgroup$
    – robert bristow-johnson
    4 hours ago
















1












1








1





$begingroup$


Could someone please explain in what case the phase of a real number is equal to -pi (and not pi)?



I know that for positive numbers, the phase is zero. For zero, we define the phase as zero as well. And for negative numbers, the phase would be pi. But I was reading some script and there it says the phase of a real number is either 0, pi, or -pi.










share|improve this question









$endgroup$




Could someone please explain in what case the phase of a real number is equal to -pi (and not pi)?



I know that for positive numbers, the phase is zero. For zero, we define the phase as zero as well. And for negative numbers, the phase would be pi. But I was reading some script and there it says the phase of a real number is either 0, pi, or -pi.







phase






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 5 hours ago









NioushaNiousha

1596




1596












  • $begingroup$
    do you know about phase unwrapping?
    $endgroup$
    – robert bristow-johnson
    4 hours ago




















  • $begingroup$
    do you know about phase unwrapping?
    $endgroup$
    – robert bristow-johnson
    4 hours ago


















$begingroup$
do you know about phase unwrapping?
$endgroup$
– robert bristow-johnson
4 hours ago






$begingroup$
do you know about phase unwrapping?
$endgroup$
– robert bristow-johnson
4 hours ago












1 Answer
1






active

oldest

votes


















2












$begingroup$

Or $2pi$, or $3pi$, or any integer multiple of $pi$. Any odd multiple corresponds to -1 + 0i and any even multiple corresponds to 1 + 0i, aka -1 and 1.



"Phase of a real number" is a little bit of a misleading label. What is required here is an understanding of the complex plane and what "phase" means in terms of a DFT bin value.



Your question is equivalent to "For what values of arg(z) is z a real number?"



If that is meaningless to you, I suggest you start by reading two blog articles of mine:



The Exponential Nature of the Complex Unit Circle



And the newest:



Angle Addition Formulas from Euler's Formula



There are of course many other searches. Your terms should be "complex plane real values" for a start.



This is essential foundation material for a lot of DSP concepts.






share|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "295"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f56336%2fphase-of-a-real-number%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Or $2pi$, or $3pi$, or any integer multiple of $pi$. Any odd multiple corresponds to -1 + 0i and any even multiple corresponds to 1 + 0i, aka -1 and 1.



    "Phase of a real number" is a little bit of a misleading label. What is required here is an understanding of the complex plane and what "phase" means in terms of a DFT bin value.



    Your question is equivalent to "For what values of arg(z) is z a real number?"



    If that is meaningless to you, I suggest you start by reading two blog articles of mine:



    The Exponential Nature of the Complex Unit Circle



    And the newest:



    Angle Addition Formulas from Euler's Formula



    There are of course many other searches. Your terms should be "complex plane real values" for a start.



    This is essential foundation material for a lot of DSP concepts.






    share|improve this answer











    $endgroup$


















      2












      $begingroup$

      Or $2pi$, or $3pi$, or any integer multiple of $pi$. Any odd multiple corresponds to -1 + 0i and any even multiple corresponds to 1 + 0i, aka -1 and 1.



      "Phase of a real number" is a little bit of a misleading label. What is required here is an understanding of the complex plane and what "phase" means in terms of a DFT bin value.



      Your question is equivalent to "For what values of arg(z) is z a real number?"



      If that is meaningless to you, I suggest you start by reading two blog articles of mine:



      The Exponential Nature of the Complex Unit Circle



      And the newest:



      Angle Addition Formulas from Euler's Formula



      There are of course many other searches. Your terms should be "complex plane real values" for a start.



      This is essential foundation material for a lot of DSP concepts.






      share|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        Or $2pi$, or $3pi$, or any integer multiple of $pi$. Any odd multiple corresponds to -1 + 0i and any even multiple corresponds to 1 + 0i, aka -1 and 1.



        "Phase of a real number" is a little bit of a misleading label. What is required here is an understanding of the complex plane and what "phase" means in terms of a DFT bin value.



        Your question is equivalent to "For what values of arg(z) is z a real number?"



        If that is meaningless to you, I suggest you start by reading two blog articles of mine:



        The Exponential Nature of the Complex Unit Circle



        And the newest:



        Angle Addition Formulas from Euler's Formula



        There are of course many other searches. Your terms should be "complex plane real values" for a start.



        This is essential foundation material for a lot of DSP concepts.






        share|improve this answer











        $endgroup$



        Or $2pi$, or $3pi$, or any integer multiple of $pi$. Any odd multiple corresponds to -1 + 0i and any even multiple corresponds to 1 + 0i, aka -1 and 1.



        "Phase of a real number" is a little bit of a misleading label. What is required here is an understanding of the complex plane and what "phase" means in terms of a DFT bin value.



        Your question is equivalent to "For what values of arg(z) is z a real number?"



        If that is meaningless to you, I suggest you start by reading two blog articles of mine:



        The Exponential Nature of the Complex Unit Circle



        And the newest:



        Angle Addition Formulas from Euler's Formula



        There are of course many other searches. Your terms should be "complex plane real values" for a start.



        This is essential foundation material for a lot of DSP concepts.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 4 hours ago









        MBaz

        9,01041733




        9,01041733










        answered 4 hours ago









        Cedron DawgCedron Dawg

        3,0632312




        3,0632312






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Signal Processing Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f56336%2fphase-of-a-real-number%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            As a Security Precaution, the user account has been locked The Next CEO of Stack OverflowMS...

            Список ссавців Італії Природоохоронні статуси | Список |...

            Українські прізвища Зміст Історичні відомості |...