Calculus Optimization - Point on graph closest to given pointFind point closest to the given pointFind the...
"which" command doesn't work / path of Safari?
How does one intimidate enemies without having the capacity for violence?
Calculus Optimization - Point on graph closest to given point
Schwarzchild Radius of the Universe
Can Medicine checks be used, with decent rolls, to completely mitigate the risk of death from ongoing damage?
How can bays and straits be determined in a procedurally generated map?
How can I fix this gap between bookcases I made?
Draw simple lines in Inkscape
A function which translates a sentence to title-case
What is the offset in a seaplane's hull?
How is this relation reflexive?
Is there a familial term for apples and pears?
I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine
How to make payment on the internet without leaving a money trail?
Is there really no realistic way for a skeleton monster to move around without magic?
declaring a variable twice in IIFE
How do you conduct xenoanthropology after first contact?
Can I make popcorn with any corn?
Why is this code 6.5x slower with optimizations enabled?
What are these boxed doors outside store fronts in New York?
How to report a triplet of septets in NMR tabulation?
What typically incentivizes a professor to change jobs to a lower ranking university?
Copenhagen passport control - US citizen
How to calculate implied correlation via observed market price (Margrabe option)
Calculus Optimization - Point on graph closest to given point
Find point closest to the given pointFind the point on graph of $xy=12$ that is closest to the point $(5,0)$Optimization question/ calculusOptimization, point on parabola closest to another pointOptimization Calculus QuestionFinding the points on a curve, closest to a specific pointnth closest point with integer coordinates to a given pointFind the points on the graph of the function that are closest to the given point.Which point of the graph of $y=sqrt{x}$ is closest to the point $(1,0)$?Optimization problem: Find the point on the line $−x + 2y − 1 = 0$ that is closest to the point $(1, 2)$.
$begingroup$
Which point on the graph of $ y=7-x^2$ is closest to the point $(0,4)$ ?
calculus optimization
New contributor
$endgroup$
add a comment |
$begingroup$
Which point on the graph of $ y=7-x^2$ is closest to the point $(0,4)$ ?
calculus optimization
New contributor
$endgroup$
add a comment |
$begingroup$
Which point on the graph of $ y=7-x^2$ is closest to the point $(0,4)$ ?
calculus optimization
New contributor
$endgroup$
Which point on the graph of $ y=7-x^2$ is closest to the point $(0,4)$ ?
calculus optimization
calculus optimization
New contributor
New contributor
edited 20 mins ago
dmtri
1,7712521
1,7712521
New contributor
asked 1 hour ago
Julian CallegariJulian Callegari
111
111
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
HINT
If a point is on the specified graph, it looks like $p_x = left(x,7-x^2right)$. So the square $D$ of the distance $d$ of $p_x$ to $(0,4)$ is given by
$$
D(x) = d^2(x) = (x-0)^2 + (7-x^2-4)^2
$$
Can you simplify and minimize $D(x)$?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Julian Callegari is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179059%2fcalculus-optimization-point-on-graph-closest-to-given-point%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
HINT
If a point is on the specified graph, it looks like $p_x = left(x,7-x^2right)$. So the square $D$ of the distance $d$ of $p_x$ to $(0,4)$ is given by
$$
D(x) = d^2(x) = (x-0)^2 + (7-x^2-4)^2
$$
Can you simplify and minimize $D(x)$?
$endgroup$
add a comment |
$begingroup$
HINT
If a point is on the specified graph, it looks like $p_x = left(x,7-x^2right)$. So the square $D$ of the distance $d$ of $p_x$ to $(0,4)$ is given by
$$
D(x) = d^2(x) = (x-0)^2 + (7-x^2-4)^2
$$
Can you simplify and minimize $D(x)$?
$endgroup$
add a comment |
$begingroup$
HINT
If a point is on the specified graph, it looks like $p_x = left(x,7-x^2right)$. So the square $D$ of the distance $d$ of $p_x$ to $(0,4)$ is given by
$$
D(x) = d^2(x) = (x-0)^2 + (7-x^2-4)^2
$$
Can you simplify and minimize $D(x)$?
$endgroup$
HINT
If a point is on the specified graph, it looks like $p_x = left(x,7-x^2right)$. So the square $D$ of the distance $d$ of $p_x$ to $(0,4)$ is given by
$$
D(x) = d^2(x) = (x-0)^2 + (7-x^2-4)^2
$$
Can you simplify and minimize $D(x)$?
answered 59 mins ago
gt6989bgt6989b
35.6k22557
35.6k22557
add a comment |
add a comment |
Julian Callegari is a new contributor. Be nice, and check out our Code of Conduct.
Julian Callegari is a new contributor. Be nice, and check out our Code of Conduct.
Julian Callegari is a new contributor. Be nice, and check out our Code of Conduct.
Julian Callegari is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179059%2fcalculus-optimization-point-on-graph-closest-to-given-point%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown