Charged enclosed by the sphere“Find the net force the southern hemisphere of a uniformly charged sphere...

what is the difference between throw e and throw new Exception(e)

Why do neural networks need so many training examples to perform?

How to avoid being sexist when trying to employ someone to function in a very sexist environment?

Why was it necessary for Jesus to go through Samaria in John 4:4

Do authors have to be politically correct in article-writing?

Why do members of Congress in committee hearings ask witnesses the same question multiple times?

What do the pedals on grand pianos do?

Sometimes a banana is just a banana

What is a term for a function that when called repeatedly, has the same effect as calling once?

What is the difference between ashamed and shamed?

How to approximate rolls for potions of healing using only d6's?

Contradiction with Banach Fixed Point Theorem

Criticizing long fiction. How is it different from short?

How to add multiple differently colored borders around a node?

How to define a macro with multiple optional parameters?

Is Draco portrayed in the canon books as good-looking?

The change directory (cd) command is not working with a USB drive

Charged enclosed by the sphere

Why is c4 a better move in this position?

Auto Insert date into Notepad

Is divide-by-zero a security vulnerability?

How would an AI self awareness kill switch work?

awk unexpectedly removes dot from string

What am I? I am in theaters and computer programs



Charged enclosed by the sphere


“Find the net force the southern hemisphere of a uniformly charged sphere exerts on the northern hemisphere”Why $epsilon_0 = 1/(4pi k)$ instead of $epsilon_0 = 4pi k$?How does Gauss's Law imply that the electric field is zero inside a hollow sphere?Gauss's Law - Charge EnclosedElectric field from metal rod with surface chargeConfused about a question about a dielectric sphereElectric Charge enclosed in a sphere using vector calculusWhy doesn't fully integrating Gauss' law give the correct linear charge density here?Electrostatic force per unit area on a hemisphere due to its other halfHow to calculate the electric field using Gauss' s Law in this example?













4












$begingroup$


I'm reviewing the book "Conquering the Physics GRE" for my upcoming Physics GRE. I came across this problem which I'm having trouble with understanding. In particular, I understand the solution that the author provides but I don't understand what is wrong with my approach.




Q. The Electric field inside a sphere of radius $R$ is given by $E = E_0 z^2 hat{textbf{z}}$. What is the total charge of the sphere?




The authors approach involving taking the divergence of the electric field to get the charge density and then integrating the density over the volume of the sphere to get charged enclosed, which in their case turns out to be $0$.



But we can also just use a concentric sphere of radius $r$ ($0 < r le R$) as a Gaussian surface and just use the integral form of Maxwell's equation to calculate the charge enclosed.



$$ oint limits_{S} vec{E} cdot dvec{S} = frac{Q_{enc}}{epsilon_0} .$$



Since the area vector points in the radial direction, if we assume it makes an angle $theta$ with the Electric Field vector, and given $z = r cos(theta)$, we have



$$ Q_{enc} = epsilon_0 int limits_{0}^{pi} int limits_{0}^{2pi} E_0 r^2 cos^2(theta) r^2 sin(theta) dtheta dphi,$$



$$ Q_{enc} = frac{4 pi epsilon_0 E_0}{3} r^4 . $$



If we want the charge enclosed by the sphere, we just set $r = R$, so we get



$$ Q = frac{4 pi epsilon_0 E_0}{3} R^4 .$$



which isn't zero.



I'm having trouble figuring out where I'm going wrong. Any suggestions appreciated.










share|cite|improve this question









New contributor




timoneo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    4












    $begingroup$


    I'm reviewing the book "Conquering the Physics GRE" for my upcoming Physics GRE. I came across this problem which I'm having trouble with understanding. In particular, I understand the solution that the author provides but I don't understand what is wrong with my approach.




    Q. The Electric field inside a sphere of radius $R$ is given by $E = E_0 z^2 hat{textbf{z}}$. What is the total charge of the sphere?




    The authors approach involving taking the divergence of the electric field to get the charge density and then integrating the density over the volume of the sphere to get charged enclosed, which in their case turns out to be $0$.



    But we can also just use a concentric sphere of radius $r$ ($0 < r le R$) as a Gaussian surface and just use the integral form of Maxwell's equation to calculate the charge enclosed.



    $$ oint limits_{S} vec{E} cdot dvec{S} = frac{Q_{enc}}{epsilon_0} .$$



    Since the area vector points in the radial direction, if we assume it makes an angle $theta$ with the Electric Field vector, and given $z = r cos(theta)$, we have



    $$ Q_{enc} = epsilon_0 int limits_{0}^{pi} int limits_{0}^{2pi} E_0 r^2 cos^2(theta) r^2 sin(theta) dtheta dphi,$$



    $$ Q_{enc} = frac{4 pi epsilon_0 E_0}{3} r^4 . $$



    If we want the charge enclosed by the sphere, we just set $r = R$, so we get



    $$ Q = frac{4 pi epsilon_0 E_0}{3} R^4 .$$



    which isn't zero.



    I'm having trouble figuring out where I'm going wrong. Any suggestions appreciated.










    share|cite|improve this question









    New contributor




    timoneo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      4












      4








      4


      3



      $begingroup$


      I'm reviewing the book "Conquering the Physics GRE" for my upcoming Physics GRE. I came across this problem which I'm having trouble with understanding. In particular, I understand the solution that the author provides but I don't understand what is wrong with my approach.




      Q. The Electric field inside a sphere of radius $R$ is given by $E = E_0 z^2 hat{textbf{z}}$. What is the total charge of the sphere?




      The authors approach involving taking the divergence of the electric field to get the charge density and then integrating the density over the volume of the sphere to get charged enclosed, which in their case turns out to be $0$.



      But we can also just use a concentric sphere of radius $r$ ($0 < r le R$) as a Gaussian surface and just use the integral form of Maxwell's equation to calculate the charge enclosed.



      $$ oint limits_{S} vec{E} cdot dvec{S} = frac{Q_{enc}}{epsilon_0} .$$



      Since the area vector points in the radial direction, if we assume it makes an angle $theta$ with the Electric Field vector, and given $z = r cos(theta)$, we have



      $$ Q_{enc} = epsilon_0 int limits_{0}^{pi} int limits_{0}^{2pi} E_0 r^2 cos^2(theta) r^2 sin(theta) dtheta dphi,$$



      $$ Q_{enc} = frac{4 pi epsilon_0 E_0}{3} r^4 . $$



      If we want the charge enclosed by the sphere, we just set $r = R$, so we get



      $$ Q = frac{4 pi epsilon_0 E_0}{3} R^4 .$$



      which isn't zero.



      I'm having trouble figuring out where I'm going wrong. Any suggestions appreciated.










      share|cite|improve this question









      New contributor




      timoneo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I'm reviewing the book "Conquering the Physics GRE" for my upcoming Physics GRE. I came across this problem which I'm having trouble with understanding. In particular, I understand the solution that the author provides but I don't understand what is wrong with my approach.




      Q. The Electric field inside a sphere of radius $R$ is given by $E = E_0 z^2 hat{textbf{z}}$. What is the total charge of the sphere?




      The authors approach involving taking the divergence of the electric field to get the charge density and then integrating the density over the volume of the sphere to get charged enclosed, which in their case turns out to be $0$.



      But we can also just use a concentric sphere of radius $r$ ($0 < r le R$) as a Gaussian surface and just use the integral form of Maxwell's equation to calculate the charge enclosed.



      $$ oint limits_{S} vec{E} cdot dvec{S} = frac{Q_{enc}}{epsilon_0} .$$



      Since the area vector points in the radial direction, if we assume it makes an angle $theta$ with the Electric Field vector, and given $z = r cos(theta)$, we have



      $$ Q_{enc} = epsilon_0 int limits_{0}^{pi} int limits_{0}^{2pi} E_0 r^2 cos^2(theta) r^2 sin(theta) dtheta dphi,$$



      $$ Q_{enc} = frac{4 pi epsilon_0 E_0}{3} r^4 . $$



      If we want the charge enclosed by the sphere, we just set $r = R$, so we get



      $$ Q = frac{4 pi epsilon_0 E_0}{3} R^4 .$$



      which isn't zero.



      I'm having trouble figuring out where I'm going wrong. Any suggestions appreciated.







      homework-and-exercises electrostatics electric-fields charge gauss-law






      share|cite|improve this question









      New contributor




      timoneo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      timoneo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 21 mins ago









      Qmechanic

      105k121921207




      105k121921207






      New contributor




      timoneo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 11 hours ago









      timoneotimoneo

      233




      233




      New contributor




      timoneo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      timoneo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      timoneo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          I think you forgot to account for $mathbf{hat{z}}$



          Let $mathbf{hat{r}}$ be the normal to the surface of our sphere. If you take the route of integrating the electric field over the surface of the sphere that contains the charge, then you will be evaluating the following quantity.



          $z^2 mathbf{hat{z}}.mathbf{hat{r}}=z^2 mathbf{hat{z}}.mathbf{r}/r=z^2, z/r=z^3/r$



          So you will be integrating $z^3$ over the surface of the sphere centered on the origin. Since $z^3$ is an odd function the integral will vanish.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks! Indeed I forgot the $hat{z}$. FYI, I marked your answer as correct, but I don't have enough reputation to publicly upvote you, so just thanking you via this comment.
            $endgroup$
            – timoneo
            10 hours ago










          • $begingroup$
            I thought this question was fascinating. I don't understand where the minus sign appears to make the function odd. Shouldn't ^z and ^r point in the same direction over the entire surface of the sphere, giving a positive dot product over the entire surface?
            $endgroup$
            – lamplamp
            10 hours ago








          • 1




            $begingroup$
            @timoneo: good question. Glad I could help
            $endgroup$
            – Cryo
            10 hours ago








          • 2




            $begingroup$
            @lamplamp: $mathbf{hat{z}}$ does point in the same direction at all points, but $mathbf{hat{r}}$ does not since it is normal and points out of the sphere. If this sphere was Earth, $mathbf{hat{r}}$ would point in the direction of the rocket taking off the Earth and flying to space, so on north pole $mathbf{hat{r}}$ points "up", whilst on south pole it points "down".
            $endgroup$
            – Cryo
            10 hours ago












          • $begingroup$
            Thanks, when I read the question, I assumed that z was referencing a radial coordinate as a dummy variable to distinguish from r. From the thread here, I now believe that z was chosen to as standard Cartesian, which makes perfect sense about the function being odd.
            $endgroup$
            – lamplamp
            10 hours ago



















          5












          $begingroup$

          There is also a nice geometrical argument for this. Since the field is $vec E=z^2hat z$, the fields lines always point along $+hat z$ and the magnitude of the field does not depend on the position in the $xy$-plane. As a result, every field line that enters the sphere must also exit the sphere, so the net flux must be $0$.



          enter image description here






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Arrows point in the z direction? I have somehow a hard time understanding your graph.
            $endgroup$
            – lalala
            2 hours ago










          • $begingroup$
            The arrows represent the vector field $vec{E}$. The z-axis is the axis going from left to right. The circle is a cross section of the sphere.
            $endgroup$
            – infinitezero
            13 mins ago











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "151"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          timoneo is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f464265%2fcharged-enclosed-by-the-sphere%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          6












          $begingroup$

          I think you forgot to account for $mathbf{hat{z}}$



          Let $mathbf{hat{r}}$ be the normal to the surface of our sphere. If you take the route of integrating the electric field over the surface of the sphere that contains the charge, then you will be evaluating the following quantity.



          $z^2 mathbf{hat{z}}.mathbf{hat{r}}=z^2 mathbf{hat{z}}.mathbf{r}/r=z^2, z/r=z^3/r$



          So you will be integrating $z^3$ over the surface of the sphere centered on the origin. Since $z^3$ is an odd function the integral will vanish.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks! Indeed I forgot the $hat{z}$. FYI, I marked your answer as correct, but I don't have enough reputation to publicly upvote you, so just thanking you via this comment.
            $endgroup$
            – timoneo
            10 hours ago










          • $begingroup$
            I thought this question was fascinating. I don't understand where the minus sign appears to make the function odd. Shouldn't ^z and ^r point in the same direction over the entire surface of the sphere, giving a positive dot product over the entire surface?
            $endgroup$
            – lamplamp
            10 hours ago








          • 1




            $begingroup$
            @timoneo: good question. Glad I could help
            $endgroup$
            – Cryo
            10 hours ago








          • 2




            $begingroup$
            @lamplamp: $mathbf{hat{z}}$ does point in the same direction at all points, but $mathbf{hat{r}}$ does not since it is normal and points out of the sphere. If this sphere was Earth, $mathbf{hat{r}}$ would point in the direction of the rocket taking off the Earth and flying to space, so on north pole $mathbf{hat{r}}$ points "up", whilst on south pole it points "down".
            $endgroup$
            – Cryo
            10 hours ago












          • $begingroup$
            Thanks, when I read the question, I assumed that z was referencing a radial coordinate as a dummy variable to distinguish from r. From the thread here, I now believe that z was chosen to as standard Cartesian, which makes perfect sense about the function being odd.
            $endgroup$
            – lamplamp
            10 hours ago
















          6












          $begingroup$

          I think you forgot to account for $mathbf{hat{z}}$



          Let $mathbf{hat{r}}$ be the normal to the surface of our sphere. If you take the route of integrating the electric field over the surface of the sphere that contains the charge, then you will be evaluating the following quantity.



          $z^2 mathbf{hat{z}}.mathbf{hat{r}}=z^2 mathbf{hat{z}}.mathbf{r}/r=z^2, z/r=z^3/r$



          So you will be integrating $z^3$ over the surface of the sphere centered on the origin. Since $z^3$ is an odd function the integral will vanish.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks! Indeed I forgot the $hat{z}$. FYI, I marked your answer as correct, but I don't have enough reputation to publicly upvote you, so just thanking you via this comment.
            $endgroup$
            – timoneo
            10 hours ago










          • $begingroup$
            I thought this question was fascinating. I don't understand where the minus sign appears to make the function odd. Shouldn't ^z and ^r point in the same direction over the entire surface of the sphere, giving a positive dot product over the entire surface?
            $endgroup$
            – lamplamp
            10 hours ago








          • 1




            $begingroup$
            @timoneo: good question. Glad I could help
            $endgroup$
            – Cryo
            10 hours ago








          • 2




            $begingroup$
            @lamplamp: $mathbf{hat{z}}$ does point in the same direction at all points, but $mathbf{hat{r}}$ does not since it is normal and points out of the sphere. If this sphere was Earth, $mathbf{hat{r}}$ would point in the direction of the rocket taking off the Earth and flying to space, so on north pole $mathbf{hat{r}}$ points "up", whilst on south pole it points "down".
            $endgroup$
            – Cryo
            10 hours ago












          • $begingroup$
            Thanks, when I read the question, I assumed that z was referencing a radial coordinate as a dummy variable to distinguish from r. From the thread here, I now believe that z was chosen to as standard Cartesian, which makes perfect sense about the function being odd.
            $endgroup$
            – lamplamp
            10 hours ago














          6












          6








          6





          $begingroup$

          I think you forgot to account for $mathbf{hat{z}}$



          Let $mathbf{hat{r}}$ be the normal to the surface of our sphere. If you take the route of integrating the electric field over the surface of the sphere that contains the charge, then you will be evaluating the following quantity.



          $z^2 mathbf{hat{z}}.mathbf{hat{r}}=z^2 mathbf{hat{z}}.mathbf{r}/r=z^2, z/r=z^3/r$



          So you will be integrating $z^3$ over the surface of the sphere centered on the origin. Since $z^3$ is an odd function the integral will vanish.






          share|cite|improve this answer









          $endgroup$



          I think you forgot to account for $mathbf{hat{z}}$



          Let $mathbf{hat{r}}$ be the normal to the surface of our sphere. If you take the route of integrating the electric field over the surface of the sphere that contains the charge, then you will be evaluating the following quantity.



          $z^2 mathbf{hat{z}}.mathbf{hat{r}}=z^2 mathbf{hat{z}}.mathbf{r}/r=z^2, z/r=z^3/r$



          So you will be integrating $z^3$ over the surface of the sphere centered on the origin. Since $z^3$ is an odd function the integral will vanish.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 10 hours ago









          CryoCryo

          41815




          41815












          • $begingroup$
            Thanks! Indeed I forgot the $hat{z}$. FYI, I marked your answer as correct, but I don't have enough reputation to publicly upvote you, so just thanking you via this comment.
            $endgroup$
            – timoneo
            10 hours ago










          • $begingroup$
            I thought this question was fascinating. I don't understand where the minus sign appears to make the function odd. Shouldn't ^z and ^r point in the same direction over the entire surface of the sphere, giving a positive dot product over the entire surface?
            $endgroup$
            – lamplamp
            10 hours ago








          • 1




            $begingroup$
            @timoneo: good question. Glad I could help
            $endgroup$
            – Cryo
            10 hours ago








          • 2




            $begingroup$
            @lamplamp: $mathbf{hat{z}}$ does point in the same direction at all points, but $mathbf{hat{r}}$ does not since it is normal and points out of the sphere. If this sphere was Earth, $mathbf{hat{r}}$ would point in the direction of the rocket taking off the Earth and flying to space, so on north pole $mathbf{hat{r}}$ points "up", whilst on south pole it points "down".
            $endgroup$
            – Cryo
            10 hours ago












          • $begingroup$
            Thanks, when I read the question, I assumed that z was referencing a radial coordinate as a dummy variable to distinguish from r. From the thread here, I now believe that z was chosen to as standard Cartesian, which makes perfect sense about the function being odd.
            $endgroup$
            – lamplamp
            10 hours ago


















          • $begingroup$
            Thanks! Indeed I forgot the $hat{z}$. FYI, I marked your answer as correct, but I don't have enough reputation to publicly upvote you, so just thanking you via this comment.
            $endgroup$
            – timoneo
            10 hours ago










          • $begingroup$
            I thought this question was fascinating. I don't understand where the minus sign appears to make the function odd. Shouldn't ^z and ^r point in the same direction over the entire surface of the sphere, giving a positive dot product over the entire surface?
            $endgroup$
            – lamplamp
            10 hours ago








          • 1




            $begingroup$
            @timoneo: good question. Glad I could help
            $endgroup$
            – Cryo
            10 hours ago








          • 2




            $begingroup$
            @lamplamp: $mathbf{hat{z}}$ does point in the same direction at all points, but $mathbf{hat{r}}$ does not since it is normal and points out of the sphere. If this sphere was Earth, $mathbf{hat{r}}$ would point in the direction of the rocket taking off the Earth and flying to space, so on north pole $mathbf{hat{r}}$ points "up", whilst on south pole it points "down".
            $endgroup$
            – Cryo
            10 hours ago












          • $begingroup$
            Thanks, when I read the question, I assumed that z was referencing a radial coordinate as a dummy variable to distinguish from r. From the thread here, I now believe that z was chosen to as standard Cartesian, which makes perfect sense about the function being odd.
            $endgroup$
            – lamplamp
            10 hours ago
















          $begingroup$
          Thanks! Indeed I forgot the $hat{z}$. FYI, I marked your answer as correct, but I don't have enough reputation to publicly upvote you, so just thanking you via this comment.
          $endgroup$
          – timoneo
          10 hours ago




          $begingroup$
          Thanks! Indeed I forgot the $hat{z}$. FYI, I marked your answer as correct, but I don't have enough reputation to publicly upvote you, so just thanking you via this comment.
          $endgroup$
          – timoneo
          10 hours ago












          $begingroup$
          I thought this question was fascinating. I don't understand where the minus sign appears to make the function odd. Shouldn't ^z and ^r point in the same direction over the entire surface of the sphere, giving a positive dot product over the entire surface?
          $endgroup$
          – lamplamp
          10 hours ago






          $begingroup$
          I thought this question was fascinating. I don't understand where the minus sign appears to make the function odd. Shouldn't ^z and ^r point in the same direction over the entire surface of the sphere, giving a positive dot product over the entire surface?
          $endgroup$
          – lamplamp
          10 hours ago






          1




          1




          $begingroup$
          @timoneo: good question. Glad I could help
          $endgroup$
          – Cryo
          10 hours ago






          $begingroup$
          @timoneo: good question. Glad I could help
          $endgroup$
          – Cryo
          10 hours ago






          2




          2




          $begingroup$
          @lamplamp: $mathbf{hat{z}}$ does point in the same direction at all points, but $mathbf{hat{r}}$ does not since it is normal and points out of the sphere. If this sphere was Earth, $mathbf{hat{r}}$ would point in the direction of the rocket taking off the Earth and flying to space, so on north pole $mathbf{hat{r}}$ points "up", whilst on south pole it points "down".
          $endgroup$
          – Cryo
          10 hours ago






          $begingroup$
          @lamplamp: $mathbf{hat{z}}$ does point in the same direction at all points, but $mathbf{hat{r}}$ does not since it is normal and points out of the sphere. If this sphere was Earth, $mathbf{hat{r}}$ would point in the direction of the rocket taking off the Earth and flying to space, so on north pole $mathbf{hat{r}}$ points "up", whilst on south pole it points "down".
          $endgroup$
          – Cryo
          10 hours ago














          $begingroup$
          Thanks, when I read the question, I assumed that z was referencing a radial coordinate as a dummy variable to distinguish from r. From the thread here, I now believe that z was chosen to as standard Cartesian, which makes perfect sense about the function being odd.
          $endgroup$
          – lamplamp
          10 hours ago




          $begingroup$
          Thanks, when I read the question, I assumed that z was referencing a radial coordinate as a dummy variable to distinguish from r. From the thread here, I now believe that z was chosen to as standard Cartesian, which makes perfect sense about the function being odd.
          $endgroup$
          – lamplamp
          10 hours ago











          5












          $begingroup$

          There is also a nice geometrical argument for this. Since the field is $vec E=z^2hat z$, the fields lines always point along $+hat z$ and the magnitude of the field does not depend on the position in the $xy$-plane. As a result, every field line that enters the sphere must also exit the sphere, so the net flux must be $0$.



          enter image description here






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Arrows point in the z direction? I have somehow a hard time understanding your graph.
            $endgroup$
            – lalala
            2 hours ago










          • $begingroup$
            The arrows represent the vector field $vec{E}$. The z-axis is the axis going from left to right. The circle is a cross section of the sphere.
            $endgroup$
            – infinitezero
            13 mins ago
















          5












          $begingroup$

          There is also a nice geometrical argument for this. Since the field is $vec E=z^2hat z$, the fields lines always point along $+hat z$ and the magnitude of the field does not depend on the position in the $xy$-plane. As a result, every field line that enters the sphere must also exit the sphere, so the net flux must be $0$.



          enter image description here






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Arrows point in the z direction? I have somehow a hard time understanding your graph.
            $endgroup$
            – lalala
            2 hours ago










          • $begingroup$
            The arrows represent the vector field $vec{E}$. The z-axis is the axis going from left to right. The circle is a cross section of the sphere.
            $endgroup$
            – infinitezero
            13 mins ago














          5












          5








          5





          $begingroup$

          There is also a nice geometrical argument for this. Since the field is $vec E=z^2hat z$, the fields lines always point along $+hat z$ and the magnitude of the field does not depend on the position in the $xy$-plane. As a result, every field line that enters the sphere must also exit the sphere, so the net flux must be $0$.



          enter image description here






          share|cite|improve this answer











          $endgroup$



          There is also a nice geometrical argument for this. Since the field is $vec E=z^2hat z$, the fields lines always point along $+hat z$ and the magnitude of the field does not depend on the position in the $xy$-plane. As a result, every field line that enters the sphere must also exit the sphere, so the net flux must be $0$.



          enter image description here







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 8 hours ago

























          answered 8 hours ago









          ZeroTheHeroZeroTheHero

          20.5k53260




          20.5k53260












          • $begingroup$
            Arrows point in the z direction? I have somehow a hard time understanding your graph.
            $endgroup$
            – lalala
            2 hours ago










          • $begingroup$
            The arrows represent the vector field $vec{E}$. The z-axis is the axis going from left to right. The circle is a cross section of the sphere.
            $endgroup$
            – infinitezero
            13 mins ago


















          • $begingroup$
            Arrows point in the z direction? I have somehow a hard time understanding your graph.
            $endgroup$
            – lalala
            2 hours ago










          • $begingroup$
            The arrows represent the vector field $vec{E}$. The z-axis is the axis going from left to right. The circle is a cross section of the sphere.
            $endgroup$
            – infinitezero
            13 mins ago
















          $begingroup$
          Arrows point in the z direction? I have somehow a hard time understanding your graph.
          $endgroup$
          – lalala
          2 hours ago




          $begingroup$
          Arrows point in the z direction? I have somehow a hard time understanding your graph.
          $endgroup$
          – lalala
          2 hours ago












          $begingroup$
          The arrows represent the vector field $vec{E}$. The z-axis is the axis going from left to right. The circle is a cross section of the sphere.
          $endgroup$
          – infinitezero
          13 mins ago




          $begingroup$
          The arrows represent the vector field $vec{E}$. The z-axis is the axis going from left to right. The circle is a cross section of the sphere.
          $endgroup$
          – infinitezero
          13 mins ago










          timoneo is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          timoneo is a new contributor. Be nice, and check out our Code of Conduct.













          timoneo is a new contributor. Be nice, and check out our Code of Conduct.












          timoneo is a new contributor. Be nice, and check out our Code of Conduct.
















          Thanks for contributing an answer to Physics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f464265%2fcharged-enclosed-by-the-sphere%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Фонтен-ла-Гаярд Зміст Демографія | Економіка | Посилання |...

          Список ссавців Італії Природоохоронні статуси | Список |...

          Маріан Котлеба Зміст Життєпис | Політичні погляди |...