Apply MapThread to all but one variableHow do you efficiently return all of a List but one element?All values...
How to fry ground beef so it is well-browned
Extension of 2-adic valuation to the real numbers
Function pointer with named arguments?
What's the polite way to say "I need to urinate"?
Who was the lone kid in the line of people at the lake at the end of Avengers: Endgame?
Check if a string is entirely made of the same substring
Implications of cigar-shaped bodies having rings?
How does Captain America channel this power?
What is the most expensive material in the world that could be used to create Pun-Pun's lute?
What is the smallest unit of eos?
Can we say “you can pay when the order gets ready”?
Is there any official lore on the Far Realm?
As an international instructor, should I openly talk about my accent?
How to write a column outside the braces in a matrix?
Pulling the rope with one hand is as heavy as with two hands?
Are there physical dangers to preparing a prepared piano?
Critique of timeline aesthetic
How to have a sharp product image?
How to denote matrix elements succinctly?
What makes accurate emulation of old systems a difficult task?
Is there really no use for MD5 anymore?
How could Tony Stark make this in Endgame?
What are the steps to solving this definite integral?
Two field separators (colon and space) in awk
Apply MapThread to all but one variable
How do you efficiently return all of a List but one element?All values for a function with two arguments without OuterEfficiently finding the maximum value of a column in a matrixnested use of Apply/Map/MapThread in pure functionsMapThread AlternativesFinding neighbors from listMapThread problemapply binary operation to all adjacent pairsFlip sign of one variable in listFind numbers from Mean, Variance and Correlation coefficient
$begingroup$
I would like to know what is the most efficient to implement the following computation. Given three lists
a = {a_1,a_2, a_3, …, a_n}
b = {b_1,b_2, b_3, …, b_n}
c = {c_1,c_2, c_3, …, c_n}
and a function $f(x_1,x_2,x_3)$, obtain
f(a_1,b_1,c_1) f(a_1,b_1,c_2) ..... f(a_1,b_1,c_n)
f(a_2,b_2,c_1) f(a_2,b_2,c_2) ..... f(a_2,b_2,c_n)
..... ..... ..... .....
f(a_n,b_n,c_1) f(a_n,b_n,c_2) ..... f(a_n,b_n,c_n)
I cannot find a solution not using For
.
list-manipulation
$endgroup$
add a comment |
$begingroup$
I would like to know what is the most efficient to implement the following computation. Given three lists
a = {a_1,a_2, a_3, …, a_n}
b = {b_1,b_2, b_3, …, b_n}
c = {c_1,c_2, c_3, …, c_n}
and a function $f(x_1,x_2,x_3)$, obtain
f(a_1,b_1,c_1) f(a_1,b_1,c_2) ..... f(a_1,b_1,c_n)
f(a_2,b_2,c_1) f(a_2,b_2,c_2) ..... f(a_2,b_2,c_n)
..... ..... ..... .....
f(a_n,b_n,c_1) f(a_n,b_n,c_2) ..... f(a_n,b_n,c_n)
I cannot find a solution not using For
.
list-manipulation
$endgroup$
add a comment |
$begingroup$
I would like to know what is the most efficient to implement the following computation. Given three lists
a = {a_1,a_2, a_3, …, a_n}
b = {b_1,b_2, b_3, …, b_n}
c = {c_1,c_2, c_3, …, c_n}
and a function $f(x_1,x_2,x_3)$, obtain
f(a_1,b_1,c_1) f(a_1,b_1,c_2) ..... f(a_1,b_1,c_n)
f(a_2,b_2,c_1) f(a_2,b_2,c_2) ..... f(a_2,b_2,c_n)
..... ..... ..... .....
f(a_n,b_n,c_1) f(a_n,b_n,c_2) ..... f(a_n,b_n,c_n)
I cannot find a solution not using For
.
list-manipulation
$endgroup$
I would like to know what is the most efficient to implement the following computation. Given three lists
a = {a_1,a_2, a_3, …, a_n}
b = {b_1,b_2, b_3, …, b_n}
c = {c_1,c_2, c_3, …, c_n}
and a function $f(x_1,x_2,x_3)$, obtain
f(a_1,b_1,c_1) f(a_1,b_1,c_2) ..... f(a_1,b_1,c_n)
f(a_2,b_2,c_1) f(a_2,b_2,c_2) ..... f(a_2,b_2,c_n)
..... ..... ..... .....
f(a_n,b_n,c_1) f(a_n,b_n,c_2) ..... f(a_n,b_n,c_n)
I cannot find a solution not using For
.
list-manipulation
list-manipulation
edited 1 hour ago
corey979
20.9k64382
20.9k64382
asked 1 hour ago
SmerdjakovSmerdjakov
1255
1255
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Here's one way to do it with Outer
:
n = 3;
l1 = Array[a, n];
l2 = Array[b, n];
l3 = Array[c, n];
Outer[
f[#1[[1]], #1[[2]], #2] &,
Transpose @ {l1, l2},
l3,
1
]
Out[25]= {{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
1
$begingroup$
OrOuter[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel#1
manually.
$endgroup$
– Roman
1 hour ago
add a comment |
$begingroup$
a = {a1, a2, a3, a4, a5};
b = {b1, b2, b3, b4, b5};
c = {c1, c2, c3, c4, c5};
Table[f[a[[j]], b[[j]], c[[k]]], {j, 1, 5}, {k, 1, 5}]
$endgroup$
add a comment |
$begingroup$
Another possibility is to use the 3-arg version of Thread
. With Sjoerd's example:
n = 3;
l1 = Array[a,n];
l2 = Array[b,n];
l3 = Array[c,n];
Using Thread
:
Thread /@ Thread[f[l1, l2, l3], List, 2]
{{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f197144%2fapply-mapthread-to-all-but-one-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here's one way to do it with Outer
:
n = 3;
l1 = Array[a, n];
l2 = Array[b, n];
l3 = Array[c, n];
Outer[
f[#1[[1]], #1[[2]], #2] &,
Transpose @ {l1, l2},
l3,
1
]
Out[25]= {{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
1
$begingroup$
OrOuter[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel#1
manually.
$endgroup$
– Roman
1 hour ago
add a comment |
$begingroup$
Here's one way to do it with Outer
:
n = 3;
l1 = Array[a, n];
l2 = Array[b, n];
l3 = Array[c, n];
Outer[
f[#1[[1]], #1[[2]], #2] &,
Transpose @ {l1, l2},
l3,
1
]
Out[25]= {{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
1
$begingroup$
OrOuter[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel#1
manually.
$endgroup$
– Roman
1 hour ago
add a comment |
$begingroup$
Here's one way to do it with Outer
:
n = 3;
l1 = Array[a, n];
l2 = Array[b, n];
l3 = Array[c, n];
Outer[
f[#1[[1]], #1[[2]], #2] &,
Transpose @ {l1, l2},
l3,
1
]
Out[25]= {{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
Here's one way to do it with Outer
:
n = 3;
l1 = Array[a, n];
l2 = Array[b, n];
l3 = Array[c, n];
Outer[
f[#1[[1]], #1[[2]], #2] &,
Transpose @ {l1, l2},
l3,
1
]
Out[25]= {{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
answered 1 hour ago
Sjoerd SmitSjoerd Smit
4,600817
4,600817
1
$begingroup$
OrOuter[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel#1
manually.
$endgroup$
– Roman
1 hour ago
add a comment |
1
$begingroup$
OrOuter[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel#1
manually.
$endgroup$
– Roman
1 hour ago
1
1
$begingroup$
Or
Outer[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel #1
manually.$endgroup$
– Roman
1 hour ago
$begingroup$
Or
Outer[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel #1
manually.$endgroup$
– Roman
1 hour ago
add a comment |
$begingroup$
a = {a1, a2, a3, a4, a5};
b = {b1, b2, b3, b4, b5};
c = {c1, c2, c3, c4, c5};
Table[f[a[[j]], b[[j]], c[[k]]], {j, 1, 5}, {k, 1, 5}]
$endgroup$
add a comment |
$begingroup$
a = {a1, a2, a3, a4, a5};
b = {b1, b2, b3, b4, b5};
c = {c1, c2, c3, c4, c5};
Table[f[a[[j]], b[[j]], c[[k]]], {j, 1, 5}, {k, 1, 5}]
$endgroup$
add a comment |
$begingroup$
a = {a1, a2, a3, a4, a5};
b = {b1, b2, b3, b4, b5};
c = {c1, c2, c3, c4, c5};
Table[f[a[[j]], b[[j]], c[[k]]], {j, 1, 5}, {k, 1, 5}]
$endgroup$
a = {a1, a2, a3, a4, a5};
b = {b1, b2, b3, b4, b5};
c = {c1, c2, c3, c4, c5};
Table[f[a[[j]], b[[j]], c[[k]]], {j, 1, 5}, {k, 1, 5}]
answered 1 hour ago
corey979corey979
20.9k64382
20.9k64382
add a comment |
add a comment |
$begingroup$
Another possibility is to use the 3-arg version of Thread
. With Sjoerd's example:
n = 3;
l1 = Array[a,n];
l2 = Array[b,n];
l3 = Array[c,n];
Using Thread
:
Thread /@ Thread[f[l1, l2, l3], List, 2]
{{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
add a comment |
$begingroup$
Another possibility is to use the 3-arg version of Thread
. With Sjoerd's example:
n = 3;
l1 = Array[a,n];
l2 = Array[b,n];
l3 = Array[c,n];
Using Thread
:
Thread /@ Thread[f[l1, l2, l3], List, 2]
{{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
add a comment |
$begingroup$
Another possibility is to use the 3-arg version of Thread
. With Sjoerd's example:
n = 3;
l1 = Array[a,n];
l2 = Array[b,n];
l3 = Array[c,n];
Using Thread
:
Thread /@ Thread[f[l1, l2, l3], List, 2]
{{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
Another possibility is to use the 3-arg version of Thread
. With Sjoerd's example:
n = 3;
l1 = Array[a,n];
l2 = Array[b,n];
l3 = Array[c,n];
Using Thread
:
Thread /@ Thread[f[l1, l2, l3], List, 2]
{{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
answered 37 mins ago
Carl WollCarl Woll
75.9k3100198
75.9k3100198
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f197144%2fapply-mapthread-to-all-but-one-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown