Normal Operator || T^2|| = ||T||^2 Announcing the arrival of Valued Associate #679: Cesar...
How to produce a PS1 prompt in bash or ksh93 similar to tcsh
Construct a nonabelian group of order 44
How to leave only the following strings?
Can gravitational waves pass through a black hole?
How to ask rejected full-time candidates to apply to teach individual courses?
Is there a verb for listening stealthily?
Is Vivien of the Wilds + Wilderness Reclamation a competitive combo?
Lights are flickering on and off after accidentally bumping into light switch
Marquee sign letters
Why isn't everyone flabbergasted about Bran's "gift"?
How can I introduce the names of fantasy creatures to the reader?
How to create a command for the "strange m" symbol in latex?
Compiling and throwing simple dynamic exceptions at runtime for JVM
What is the ongoing value of the Kanban board to the developers as opposed to management
2 sample t test for sample sizes - 30,000 and 150,000
What is the evidence that custom checks in Northern Ireland are going to result in violence?
/bin/ls sorts differently than just ls
Why not use the yoke to control yaw, as well as pitch and roll?
Why do people think Winterfell crypts is the safest place for women, children & old people?
Can a Wizard take the Magic Initiate feat and select spells from the Wizard list?
Married in secret, can marital status in passport be changed at a later date?
Should man-made satellites feature an intelligent inverted "cow catcher"?
Why did Israel vote against lifting the American embargo on Cuba?
Why are two-digit numbers in Jonathan Swift's "Gulliver's Travels" (1726) written in "German style"?
Normal Operator || T^2|| = ||T||^2
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)If $S$ and $T$ are commuting, normal operators, then $ST$ is normal$T^2=I$ implies that $T$ is a normal operatorProving an operator is Self-adjoint using the Spectral TheoremEigenvalues of adjoint operator [General Case]diagonalizability implies existence of an inner product wrt an operator is normalNormal operator over real inner product spaceNormal matrix over real inner product space with real eigenvalues is Hermitianpolar form of unitary operatorWe have a linear operator T. Show $T^2=Id$ implies $T=T^*$Some property of Normal Operator
$begingroup$
Given a complex inner product space X, and an operator T: X $rightarrow$ X is normal i.e. T$^*$T = TT$^*$.
How can we show ||T$^2$|| = ||T||$^2$?
By the definition of operator norm, it follows that ||T|| = sup $frac{||Tx||}{||x||}$ and ||T$^2$|| = sup $frac{||T^2x||}{||x||}$. Then I can express the numerator as a form of inner product. But I still am not able to make these two equal. Any good ideas?
linear-algebra
$endgroup$
add a comment |
$begingroup$
Given a complex inner product space X, and an operator T: X $rightarrow$ X is normal i.e. T$^*$T = TT$^*$.
How can we show ||T$^2$|| = ||T||$^2$?
By the definition of operator norm, it follows that ||T|| = sup $frac{||Tx||}{||x||}$ and ||T$^2$|| = sup $frac{||T^2x||}{||x||}$. Then I can express the numerator as a form of inner product. But I still am not able to make these two equal. Any good ideas?
linear-algebra
$endgroup$
add a comment |
$begingroup$
Given a complex inner product space X, and an operator T: X $rightarrow$ X is normal i.e. T$^*$T = TT$^*$.
How can we show ||T$^2$|| = ||T||$^2$?
By the definition of operator norm, it follows that ||T|| = sup $frac{||Tx||}{||x||}$ and ||T$^2$|| = sup $frac{||T^2x||}{||x||}$. Then I can express the numerator as a form of inner product. But I still am not able to make these two equal. Any good ideas?
linear-algebra
$endgroup$
Given a complex inner product space X, and an operator T: X $rightarrow$ X is normal i.e. T$^*$T = TT$^*$.
How can we show ||T$^2$|| = ||T||$^2$?
By the definition of operator norm, it follows that ||T|| = sup $frac{||Tx||}{||x||}$ and ||T$^2$|| = sup $frac{||T^2x||}{||x||}$. Then I can express the numerator as a form of inner product. But I still am not able to make these two equal. Any good ideas?
linear-algebra
linear-algebra
asked 1 hour ago
EricEric
798
798
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
=left<x,TT^*xright>=|T^*x|^2$, so $|Tx|=|T^*x|$ (and therefore
$|T|=|T^*|$).
Then (replacing $x$ by $Tx$)
$|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
$|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
=|T^2|$. But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
whenever $T$ is normal.
$endgroup$
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
15 secs ago
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197793%2fnormal-operator-t2-t2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
=left<x,TT^*xright>=|T^*x|^2$, so $|Tx|=|T^*x|$ (and therefore
$|T|=|T^*|$).
Then (replacing $x$ by $Tx$)
$|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
$|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
=|T^2|$. But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
whenever $T$ is normal.
$endgroup$
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
15 secs ago
add a comment |
$begingroup$
If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
=left<x,TT^*xright>=|T^*x|^2$, so $|Tx|=|T^*x|$ (and therefore
$|T|=|T^*|$).
Then (replacing $x$ by $Tx$)
$|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
$|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
=|T^2|$. But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
whenever $T$ is normal.
$endgroup$
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
15 secs ago
add a comment |
$begingroup$
If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
=left<x,TT^*xright>=|T^*x|^2$, so $|Tx|=|T^*x|$ (and therefore
$|T|=|T^*|$).
Then (replacing $x$ by $Tx$)
$|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
$|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
=|T^2|$. But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
whenever $T$ is normal.
$endgroup$
If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
=left<x,TT^*xright>=|T^*x|^2$, so $|Tx|=|T^*x|$ (and therefore
$|T|=|T^*|$).
Then (replacing $x$ by $Tx$)
$|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
$|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
=|T^2|$. But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
whenever $T$ is normal.
answered 16 mins ago
Lord Shark the UnknownLord Shark the Unknown
109k1163136
109k1163136
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
15 secs ago
add a comment |
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
15 secs ago
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
15 secs ago
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
15 secs ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197793%2fnormal-operator-t2-t2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown