Numerical value of Determinant far from what it is supposed to beNumeric values from transformFindRoot for...
Is it a Cyclops number? "Nobody" knows!
Why do we say 'Pairwise Disjoint', rather than 'Disjoint'?
Rationale to prefer local variables over instance variables?
Why is there an extra space when I type "ls" on the Desktop?
Strange opamp's output impedance in spice
Is there a logarithm base for which the logarithm becomes an identity function?
Can I negotiate a patent idea for a raise, under French law?
Under what conditions can the right to remain silent be revoked in the USA?
Do Paladin Auras of Differing Oaths Stack?
What does *dead* mean in *What do you mean, dead?*?
Graphic representation of a triangle using ArrayPlot
Use Mercury as quenching liquid for swords?
Origin of the word “pushka”
Did Amazon pay $0 in taxes last year?
How exactly does an Ethernet collision happen in the cable, since nodes use different circuits for Tx and Rx?
School performs periodic password audits. Is my password compromised?
Is there a way to make cleveref distinguish two environments with the same counter?
How should I solve this integral with changing parameters?
PTIJ: Who was the sixth set of priestly clothes for?
Does the US political system, in principle, allow for a no-party system?
If nine coins are tossed, what is the probability that the number of heads is even?
What should I do when a paper is published similar to my PhD thesis without citation?
Is divide-by-zero a security vulnerability?
Has a sovereign Communist government ever run, and conceded loss, on a fair election?
Numerical value of Determinant far from what it is supposed to be
Numeric values from transformFindRoot for numerical function and how to search more than one rootCan't get a numerical value for this vector operationNumerical value of an expression with a uniform step sizeNumerical evaluation after Normal?Numerical Results with replacement rulesStrange numerical valuesWhat is the acceptable error in numerical calculations?High numerical precision failingHow to extract the minimal value from NMinimize?
$begingroup$
I have a large matrix with numerical components and want to set the determinant to zero using the parameter h
(see below). Naively, I would have expected that h
sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol
seems to affects the final outcome for a reason to don't see.
My output of the code below is:
{h -> -0.744736 + 4.42008 I}
0.0445865 - 0.0285418 I
0.0545654 - 0.114258 I
I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision
, but without success.
mat={{0.16 - (0.36 + 0.001 I) h - (1.35808 -
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0}, {-0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4}, {(0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4)}, {0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6}};
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol
numerical-value
New contributor
$endgroup$
add a comment |
$begingroup$
I have a large matrix with numerical components and want to set the determinant to zero using the parameter h
(see below). Naively, I would have expected that h
sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol
seems to affects the final outcome for a reason to don't see.
My output of the code below is:
{h -> -0.744736 + 4.42008 I}
0.0445865 - 0.0285418 I
0.0545654 - 0.114258 I
I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision
, but without success.
mat={{0.16 - (0.36 + 0.001 I) h - (1.35808 -
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0}, {-0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4}, {(0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4)}, {0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6}};
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol
numerical-value
New contributor
$endgroup$
$begingroup$
Correction: I get the output0.118714 - 0.0526506 I
(as the second output) and0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.
$endgroup$
– Nils
2 hours ago
add a comment |
$begingroup$
I have a large matrix with numerical components and want to set the determinant to zero using the parameter h
(see below). Naively, I would have expected that h
sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol
seems to affects the final outcome for a reason to don't see.
My output of the code below is:
{h -> -0.744736 + 4.42008 I}
0.0445865 - 0.0285418 I
0.0545654 - 0.114258 I
I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision
, but without success.
mat={{0.16 - (0.36 + 0.001 I) h - (1.35808 -
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0}, {-0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4}, {(0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4)}, {0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6}};
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol
numerical-value
New contributor
$endgroup$
I have a large matrix with numerical components and want to set the determinant to zero using the parameter h
(see below). Naively, I would have expected that h
sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol
seems to affects the final outcome for a reason to don't see.
My output of the code below is:
{h -> -0.744736 + 4.42008 I}
0.0445865 - 0.0285418 I
0.0545654 - 0.114258 I
I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision
, but without success.
mat={{0.16 - (0.36 + 0.001 I) h - (1.35808 -
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0}, {-0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4}, {(0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4)}, {0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6}};
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol
numerical-value
numerical-value
New contributor
New contributor
New contributor
asked 2 hours ago
NilsNils
61
61
New contributor
New contributor
$begingroup$
Correction: I get the output0.118714 - 0.0526506 I
(as the second output) and0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.
$endgroup$
– Nils
2 hours ago
add a comment |
$begingroup$
Correction: I get the output0.118714 - 0.0526506 I
(as the second output) and0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.
$endgroup$
– Nils
2 hours ago
$begingroup$
Correction: I get the output
0.118714 - 0.0526506 I
(as the second output) and 0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.$endgroup$
– Nils
2 hours ago
$begingroup$
Correction: I get the output
0.118714 - 0.0526506 I
(as the second output) and 0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.$endgroup$
– Nils
2 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
{True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True}
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192970%2fnumerical-value-of-determinant-far-from-what-it-is-supposed-to-be%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
{True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True}
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
$endgroup$
add a comment |
$begingroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
{True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True}
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
$endgroup$
add a comment |
$begingroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
{True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True}
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
$endgroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
{True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True}
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
edited 2 hours ago
answered 2 hours ago
MarcoBMarcoB
37.3k556113
37.3k556113
add a comment |
add a comment |
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192970%2fnumerical-value-of-determinant-far-from-what-it-is-supposed-to-be%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Correction: I get the output
0.118714 - 0.0526506 I
(as the second output) and0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.$endgroup$
– Nils
2 hours ago