Is there a way to generate a uniformly distributed point on a sphere from a fixed amount of random real...
How can I have a shield and a way of attacking with a ranged weapon at the same time?
Output the Arecibo Message
What is the meaning of Triage in Cybersec world?
How to type a long/em dash `—`
How did passengers keep warm on sail ships?
How much of the clove should I use when using big garlic heads?
Loose spokes after only a few rides
Why does the nucleus not repel itself?
How to notate time signature switching consistently every measure
How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?
Pokemon Turn Based battle (Python)
What do I do when my TA workload is more than expected?
What is the motivation for a law requiring 2 parties to consent for recording a conversation
How come people say “Would of”?
How to charge AirPods to keep battery healthy?
Keeping a retro style to sci-fi spaceships?
Is it okay to consider publishing in my first year of PhD?
What to do when moving next to a bird sanctuary with a loosely-domesticated cat?
Is it a good practice to use a static variable in a Test Class and use that in the actual class instead of Test.isRunningTest()?
Why doesn't shell automatically fix "useless use of cat"?
Does adding complexity mean a more secure cipher?
Is an up-to-date browser secure on an out-of-date OS?
Why are there uneven bright areas in this photo of black hole?
What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?
Is there a way to generate a uniformly distributed point on a sphere from a fixed amount of random real numbers?
The 2019 Stack Overflow Developer Survey Results Are InHow to find a random axis or unit vector in 3D?Picking random points in the volume of sphere with uniform probabilityIs a sphere a closed set?Random Point Sampling From a Set with Certain GeometryHow to Create a Plane Inside A CubeAlgorithm to generate random points in n-Sphere?Sampling on Axis-Aligned Spherical QuadRandom 3D points uniformly distributed on an ellipse shaped window of a sphereCompensating for distortion when projecting a 2D texture onto a sphereFind the relative radial position of a point within an ellipsoid
$begingroup$
The obvious solution of Lattitude & Longitude doesn't work because it generates points more densely near the poles, and the other thing I came up with (Pick a random point in the unit cube, if it's in the sphere map it to the surface, and restart if it's outside) doesn't always find a point within a fixed number of tries.
geometry
$endgroup$
add a comment |
$begingroup$
The obvious solution of Lattitude & Longitude doesn't work because it generates points more densely near the poles, and the other thing I came up with (Pick a random point in the unit cube, if it's in the sphere map it to the surface, and restart if it's outside) doesn't always find a point within a fixed number of tries.
geometry
$endgroup$
$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn♦
3 hours ago
1
$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
45 mins ago
add a comment |
$begingroup$
The obvious solution of Lattitude & Longitude doesn't work because it generates points more densely near the poles, and the other thing I came up with (Pick a random point in the unit cube, if it's in the sphere map it to the surface, and restart if it's outside) doesn't always find a point within a fixed number of tries.
geometry
$endgroup$
The obvious solution of Lattitude & Longitude doesn't work because it generates points more densely near the poles, and the other thing I came up with (Pick a random point in the unit cube, if it's in the sphere map it to the surface, and restart if it's outside) doesn't always find a point within a fixed number of tries.
geometry
geometry
edited 26 mins ago
robjohn♦
271k27313642
271k27313642
asked 3 hours ago
The Zach ManThe Zach Man
1057
1057
$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn♦
3 hours ago
1
$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
45 mins ago
add a comment |
$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn♦
3 hours ago
1
$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
45 mins ago
$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn♦
3 hours ago
1
1
$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
45 mins ago
$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
45 mins ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.
For $(u_1,u_2)$ uniform on $[0,1]^2$, either
$mathrm{lat}=arcsin(2u_1-1),mathrm{lon}=2pi u_2$
or
$z=2u_1-1,x=sqrt{1-z^2}cos(2pi u_2),y=sqrt{1-z^2}sin(2pi u_2)$
$endgroup$
add a comment |
$begingroup$
Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.
Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrt{x^2+y^2+z^2}$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.
(The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184449%2fis-there-a-way-to-generate-a-uniformly-distributed-point-on-a-sphere-from-a-fixe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.
For $(u_1,u_2)$ uniform on $[0,1]^2$, either
$mathrm{lat}=arcsin(2u_1-1),mathrm{lon}=2pi u_2$
or
$z=2u_1-1,x=sqrt{1-z^2}cos(2pi u_2),y=sqrt{1-z^2}sin(2pi u_2)$
$endgroup$
add a comment |
$begingroup$
The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.
For $(u_1,u_2)$ uniform on $[0,1]^2$, either
$mathrm{lat}=arcsin(2u_1-1),mathrm{lon}=2pi u_2$
or
$z=2u_1-1,x=sqrt{1-z^2}cos(2pi u_2),y=sqrt{1-z^2}sin(2pi u_2)$
$endgroup$
add a comment |
$begingroup$
The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.
For $(u_1,u_2)$ uniform on $[0,1]^2$, either
$mathrm{lat}=arcsin(2u_1-1),mathrm{lon}=2pi u_2$
or
$z=2u_1-1,x=sqrt{1-z^2}cos(2pi u_2),y=sqrt{1-z^2}sin(2pi u_2)$
$endgroup$
The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.
For $(u_1,u_2)$ uniform on $[0,1]^2$, either
$mathrm{lat}=arcsin(2u_1-1),mathrm{lon}=2pi u_2$
or
$z=2u_1-1,x=sqrt{1-z^2}cos(2pi u_2),y=sqrt{1-z^2}sin(2pi u_2)$
answered 1 hour ago
robjohn♦robjohn
271k27313642
271k27313642
add a comment |
add a comment |
$begingroup$
Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.
Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrt{x^2+y^2+z^2}$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.
(The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)
$endgroup$
add a comment |
$begingroup$
Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.
Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrt{x^2+y^2+z^2}$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.
(The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)
$endgroup$
add a comment |
$begingroup$
Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.
Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrt{x^2+y^2+z^2}$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.
(The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)
$endgroup$
Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.
Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrt{x^2+y^2+z^2}$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.
(The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)
answered 3 hours ago
Misha LavrovMisha Lavrov
49k757107
49k757107
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184449%2fis-there-a-way-to-generate-a-uniformly-distributed-point-on-a-sphere-from-a-fixe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn♦
3 hours ago
1
$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
45 mins ago