Proof involving the spectral radius and Jordan Canonical form Announcing the arrival of Valued...

What is the correct way to use the pinch test for dehydration?

What is the musical term for a note that continously plays through a melody?

What are the pros and cons of Aerospike nosecones?

I need to find the potential function of a vector field.

Why aren't air breathing engines used as small first stages

When is phishing education going too far?

What is this single-engine low-wing propeller plane?

Is the Standard Deduction better than Itemized when both are the same amount?

What are the motives behind Cersei's orders given to Bronn?

Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?

How do I keep my slimes from escaping their pens?

How can players work together to take actions that are otherwise impossible?

What would be the ideal power source for a cybernetic eye?

I am not a queen, who am I?

Is the argument below valid?

Models of set theory where not every set can be linearly ordered

Gastric acid as a weapon

What LEGO pieces have "real-world" functionality?

How can I fade player when goes inside or outside of the area?

List *all* the tuples!

Why is "Consequences inflicted." not a sentence?

Java 8 stream max() function argument type Comparator vs Comparable

Storing hydrofluoric acid before the invention of plastics

Why does Python start at index -1 when indexing a list from the end?



Proof involving the spectral radius and Jordan Canonical form



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Spectral radius of the Volterra operatorExample that the Jordan canonical form is not “robust.”The unit vector in the direction of uWhat is the purpose of Jordan Canonical Form?Confusion between spectral radius of matrix and spectral radius of the operatorComputing the Jordan Form of a MatrixSpectral radius of perturbed bipartite graphsA proof involving invertible $ntimes n$ matricesProof of Gelfand's formula without using $rho(A) < 1$ iff $lim A^n = 0$Computing Canonical Jordan Form over a field $mathbb{Q}$












2












$begingroup$


Let $A$ be a square matrix. Show that if $lim_{n to infty} A^{n} = 0$, then $rho(A) < 1$. Hint: Use the Jordan Canonical form. Here, $rho(A)$ denotes the spectral radius of $A$.



I'm self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem -- I don't know where to start. Any help appreciated.










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Let $A$ be a square matrix. Show that if $lim_{n to infty} A^{n} = 0$, then $rho(A) < 1$. Hint: Use the Jordan Canonical form. Here, $rho(A)$ denotes the spectral radius of $A$.



    I'm self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem -- I don't know where to start. Any help appreciated.










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Let $A$ be a square matrix. Show that if $lim_{n to infty} A^{n} = 0$, then $rho(A) < 1$. Hint: Use the Jordan Canonical form. Here, $rho(A)$ denotes the spectral radius of $A$.



      I'm self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem -- I don't know where to start. Any help appreciated.










      share|cite|improve this question









      $endgroup$




      Let $A$ be a square matrix. Show that if $lim_{n to infty} A^{n} = 0$, then $rho(A) < 1$. Hint: Use the Jordan Canonical form. Here, $rho(A)$ denotes the spectral radius of $A$.



      I'm self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem -- I don't know where to start. Any help appreciated.







      linear-algebra spectral-radius






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 1 hour ago









      mXdXmXdX

      1068




      1068






















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            Hint



            $$A=PJP^{-1} \
            J=begin{bmatrix}
            lambda_1 & * & 0 & 0 & 0 & ... & 0 \
            0& lambda_2 & * & 0 & 0 & ... & 0 \
            ...&...&...&...&....&....&....\
            0 & 0 & 0 & 0&0&...&lambda_n \
            end{bmatrix}$$

            where each $*$ is either $0$ or $1$.



            Prove by induction that
            $$J^m=begin{bmatrix}
            lambda_1^m & star & star & star & star & ... & star \
            0& lambda_2^m & star & star & star & ... & star \
            ...&...&...&...&....&....&....\
            0 & 0 & 0 & 0&0&...&lambda_n^m \
            end{bmatrix}$$

            where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
            with the $m$^th powers of the eigenvalues on the diagonal.



            Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
              $endgroup$
              – mXdX
              31 mins ago










            • $begingroup$
              @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
              $endgroup$
              – N. S.
              26 mins ago










            • $begingroup$
              I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
              $endgroup$
              – mXdX
              20 mins ago












            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189376%2fproof-involving-the-spectral-radius-and-jordan-canonical-form%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






            share|cite|improve this answer









            $endgroup$


















              5












              $begingroup$

              You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






              share|cite|improve this answer









              $endgroup$
















                5












                5








                5





                $begingroup$

                You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






                share|cite|improve this answer









                $endgroup$



                You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 37 mins ago









                Robert IsraelRobert Israel

                332k23221478




                332k23221478























                    2












                    $begingroup$

                    Hint



                    $$A=PJP^{-1} \
                    J=begin{bmatrix}
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    end{bmatrix}$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=begin{bmatrix}
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    end{bmatrix}$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      31 mins ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      26 mins ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      20 mins ago
















                    2












                    $begingroup$

                    Hint



                    $$A=PJP^{-1} \
                    J=begin{bmatrix}
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    end{bmatrix}$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=begin{bmatrix}
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    end{bmatrix}$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      31 mins ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      26 mins ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      20 mins ago














                    2












                    2








                    2





                    $begingroup$

                    Hint



                    $$A=PJP^{-1} \
                    J=begin{bmatrix}
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    end{bmatrix}$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=begin{bmatrix}
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    end{bmatrix}$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$



                    Hint



                    $$A=PJP^{-1} \
                    J=begin{bmatrix}
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    end{bmatrix}$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=begin{bmatrix}
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    end{bmatrix}$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 53 mins ago









                    N. S.N. S.

                    105k7115210




                    105k7115210












                    • $begingroup$
                      So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      31 mins ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      26 mins ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      20 mins ago


















                    • $begingroup$
                      So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      31 mins ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      26 mins ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      20 mins ago
















                    $begingroup$
                    So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
                    $endgroup$
                    – mXdX
                    31 mins ago




                    $begingroup$
                    So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
                    $endgroup$
                    – mXdX
                    31 mins ago












                    $begingroup$
                    @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                    $endgroup$
                    – N. S.
                    26 mins ago




                    $begingroup$
                    @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                    $endgroup$
                    – N. S.
                    26 mins ago












                    $begingroup$
                    I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
                    $endgroup$
                    – mXdX
                    20 mins ago




                    $begingroup$
                    I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
                    $endgroup$
                    – mXdX
                    20 mins ago


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189376%2fproof-involving-the-spectral-radius-and-jordan-canonical-form%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    As a Security Precaution, the user account has been locked The Next CEO of Stack OverflowMS...

                    Список ссавців Італії Природоохоронні статуси | Список |...

                    Українські прізвища Зміст Історичні відомості |...