Definite integral giving negative value as a result?Why do I get a negative value for this integral?Solving a...
How can I make my BBEG immortal short of making them a Lich or Vampire?
meaning of に in 本当に?
NMaximize is not converging to a solution
LaTeX: Why are digits allowed in environments, but forbidden in commands?
"You are your self first supporter", a more proper way to say it
Revoked SSL certificate
Add text to same line using sed
A case of the sniffles
How does one intimidate enemies without having the capacity for violence?
Approximately how much travel time was saved by the opening of the Suez Canal in 1869?
Intersection point of 2 lines defined by 2 points each
RSA: Danger of using p to create q
How does quantile regression compare to logistic regression with the variable split at the quantile?
How to format long polynomial?
Does detail obscure or enhance action?
Is it unprofessional to ask if a job posting on GlassDoor is real?
What typically incentivizes a professor to change jobs to a lower ranking university?
When a company launches a new product do they "come out" with a new product or do they "come up" with a new product?
I'm flying to France today and my passport expires in less than 2 months
Replacing matching entries in one column of a file by another column from a different file
Alternative to sending password over mail?
Client team has low performances and low technical skills: we always fix their work and now they stop collaborate with us. How to solve?
How much of data wrangling is a data scientist's job?
Why are electrically insulating heatsinks so rare? Is it just cost?
Definite integral giving negative value as a result?
Why do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_{0}^{2pi}frac{1}{5-3cos x} dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral
$begingroup$
I want to calculate definite integral
$$int_{-2}^{-1} frac{1}{x^2}e^{frac{1}{x}} dx = Omega$$
$$int frac{1}{x^2}e^{frac{1}{x}} dx=-e^{frac{1}{x}}+C$$
so:
$$Omega = [-e^{frac{1}{-2}}]-[-e^{frac{1}{-1}}]=-frac{1}{sqrt{e}} + frac{1}{e}$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
$endgroup$
|
show 2 more comments
$begingroup$
I want to calculate definite integral
$$int_{-2}^{-1} frac{1}{x^2}e^{frac{1}{x}} dx = Omega$$
$$int frac{1}{x^2}e^{frac{1}{x}} dx=-e^{frac{1}{x}}+C$$
so:
$$Omega = [-e^{frac{1}{-2}}]-[-e^{frac{1}{-1}}]=-frac{1}{sqrt{e}} + frac{1}{e}$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
$endgroup$
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^{1/x^2}$ is $e^{1/x^2} / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac{1}{x^2} e^{frac{1}{x}}dx$.
$endgroup$
– weno
4 hours ago
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago
|
show 2 more comments
$begingroup$
I want to calculate definite integral
$$int_{-2}^{-1} frac{1}{x^2}e^{frac{1}{x}} dx = Omega$$
$$int frac{1}{x^2}e^{frac{1}{x}} dx=-e^{frac{1}{x}}+C$$
so:
$$Omega = [-e^{frac{1}{-2}}]-[-e^{frac{1}{-1}}]=-frac{1}{sqrt{e}} + frac{1}{e}$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
$endgroup$
I want to calculate definite integral
$$int_{-2}^{-1} frac{1}{x^2}e^{frac{1}{x}} dx = Omega$$
$$int frac{1}{x^2}e^{frac{1}{x}} dx=-e^{frac{1}{x}}+C$$
so:
$$Omega = [-e^{frac{1}{-2}}]-[-e^{frac{1}{-1}}]=-frac{1}{sqrt{e}} + frac{1}{e}$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
calculus integration definite-integrals
edited 4 hours ago
Eevee Trainer
9,93931740
9,93931740
asked 5 hours ago
wenoweno
39611
39611
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^{1/x^2}$ is $e^{1/x^2} / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac{1}{x^2} e^{frac{1}{x}}dx$.
$endgroup$
– weno
4 hours ago
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago
|
show 2 more comments
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^{1/x^2}$ is $e^{1/x^2} / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac{1}{x^2} e^{frac{1}{x}}dx$.
$endgroup$
– weno
4 hours ago
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago
2
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago
2
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^{1/x^2}$ is $e^{1/x^2} / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^{1/x^2}$ is $e^{1/x^2} / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac{1}{x^2} e^{frac{1}{x}}dx$.
$endgroup$
– weno
4 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac{1}{x^2} e^{frac{1}{x}}dx$.
$endgroup$
– weno
4 hours ago
5
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago
|
show 2 more comments
1 Answer
1
active
oldest
votes
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
add a comment |
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
add a comment |
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
answered 4 hours ago
Eevee TrainerEevee Trainer
9,93931740
9,93931740
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^{1/x^2}$ is $e^{1/x^2} / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac{1}{x^2} e^{frac{1}{x}}dx$.
$endgroup$
– weno
4 hours ago
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago