what is the log of the PDF for a Normal Distribution? Announcing the arrival of Valued...

"klopfte jemand" or "jemand klopfte"?

Is there hard evidence that the grant peer review system performs significantly better than random?

Resize vertical bars (absolute-value symbols)

Simple Http Server

What is the difference between a "ranged attack" and a "ranged weapon attack"?

Nose gear failure in single prop aircraft: belly landing or nose-gear up landing?

Putting class ranking in CV, but against dept guidelines

RSA find public exponent

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?

A proverb that is used to imply that you have unexpectedly faced a big problem

Does the Mueller report show a conspiracy between Russia and the Trump Campaign?

How to change the tick of the color bar legend to black

A term for a woman complaining about things/begging in a cute/childish way

What does Turing mean by this statement?

Did Mueller's report provide an evidentiary basis for the claim of Russian govt election interference via social media?

Tips to organize LaTeX presentations for a semester

How can a team of shapeshifters communicate?

Is openssl rand command cryptographically secure?

Relating to the President and obstruction, were Mueller's conclusions preordained?

Test print coming out spongy

Getting out of while loop on console

In musical terms, what properties are varied by the human voice to produce different words / syllables?

Co-worker has annoying ringtone

What is the chair depicted in Cesare Maccari's 1889 painting "Cicerone denuncia Catilina"?



what is the log of the PDF for a Normal Distribution?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How to solve/compute for normal distribution and log-normal CDF inverse?Distribution of the convolution of squared normal and chi-squared variables?Cramer's theorem for a precise normal asymptotic distributionConditional Expected Value of Product of Normal and Log-Normal DistributionAsymptotic relation for a class of probability distribution functionsShow that $Y_1+Y_2$ have distribution skew-normalExpected Fisher's information matrix for Student's t-distribution?Expected Value of Maximum likelihood mean for Gaussian DistributionJoint density of the sum of a random and a non-random variable?Reversing conditional distribution





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}
,-infty <x<infty
$$



taking log produces:



begin{align}
ln(frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}) &=
ln(frac {1}{sigma sqrt {2pi}})+ln(e^{-frac {(x - mu)^2}{2sigma ^2}})\
&=-ln(sigma)-frac{1}{2} ln(2pi) - frac {(x - mu)^2}{2sigma ^2}
end{align}



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago












  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago


















1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}
,-infty <x<infty
$$



taking log produces:



begin{align}
ln(frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}) &=
ln(frac {1}{sigma sqrt {2pi}})+ln(e^{-frac {(x - mu)^2}{2sigma ^2}})\
&=-ln(sigma)-frac{1}{2} ln(2pi) - frac {(x - mu)^2}{2sigma ^2}
end{align}



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago












  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago














1












1








1





$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}
,-infty <x<infty
$$



taking log produces:



begin{align}
ln(frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}) &=
ln(frac {1}{sigma sqrt {2pi}})+ln(e^{-frac {(x - mu)^2}{2sigma ^2}})\
&=-ln(sigma)-frac{1}{2} ln(2pi) - frac {(x - mu)^2}{2sigma ^2}
end{align}



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$




I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}
,-infty <x<infty
$$



taking log produces:



begin{align}
ln(frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}) &=
ln(frac {1}{sigma sqrt {2pi}})+ln(e^{-frac {(x - mu)^2}{2sigma ^2}})\
&=-ln(sigma)-frac{1}{2} ln(2pi) - frac {(x - mu)^2}{2sigma ^2}
end{align}



which is very different from equation1.



is equation1 right? what am I missing?







probability log






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









shi95shi95

83




83








  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago












  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago














  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago












  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago








3




3




$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
1 hour ago






$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
1 hour ago














$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago




$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

For a single observed value $x$ you have log-likelihood:



$$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



$$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "65"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    For a single observed value $x$ you have log-likelihood:



    $$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



    For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



    $$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      For a single observed value $x$ you have log-likelihood:



      $$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



      For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



      $$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



        For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



        $$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$






        share|cite|improve this answer









        $endgroup$



        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



        For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



        $$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        BenBen

        28.9k233129




        28.9k233129






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Фонтен-ла-Гаярд Зміст Демографія | Економіка | Посилання |...

            Список ссавців Італії Природоохоронні статуси | Список |...

            Маріан Котлеба Зміст Життєпис | Політичні погляди |...