Obtaining a matrix of complex values from associations giving the real and imaginary parts of each...
How to mitigate "bandwagon attacking" from players?
How Should I Define/Declare String Constants
What can I substitute for soda pop in a sweet pork recipe?
Finding the number of integers that are a square and a cube at the same time
How to satisfy a player character's curiosity about another player character?
Do commercial flights continue with an engine out?
How do Japanese speakers determine the implied topic when none has been mentioned?
Does Windows 10's telemetry include sending *.doc files if Word crashed?
Removing debris from PCB
Why is my solution for the partial pressures of two different gases incorrect?
How to add multiple differently colored borders around a node?
Why zero tolerance on nudity in space?
How to approximate rolls for potions of healing using only d6's?
What is the wife of a henpecked husband called?
How to use a mathematical expression as xticklable
Predict mars robot position
If all harmonics are generated by plucking, how does a guitar string produce a pure frequency sound?
When does coming up with an idea constitute sufficient contribution for authorship?
Prove that every even perfect number is a triangular number.
Find the number of ways to express 1050 as sum of consecutive integers
Metadata API deployments are failing in Spring '19
I am on the US no-fly list. What can I do in order to be allowed on flights which go through US airspace?
Why can I easily sing or whistle a tune I've just heard, but not as easily reproduce it on an instrument?
Naming things the POV character doesn't know
Obtaining a matrix of complex values from associations giving the real and imaginary parts of each element?
Eigenvalues of matrix not giving imaginary partsPlot values of an $mtimes n$ matrix on the complex plane with color varying along $m$Real and Imaginary matrixDefining a non-standard algebraic numberFind the parameter values for my matrix for it to have imaginary eigenvaluesEfficiently select the smallest magnitude element from each column of a matrixGenerate random matrix where the entries in each column are drawn from a different rangeSample matrix indices in proportion to the matrix element valuesKeyed eigensystem for nested AssociationConverting a list of associations into a single association
$begingroup$
I have a list of associations keyed by real and imaginary numbers, like so:
matrix = {
{<|"r" -> 0.368252, "i" -> 0.0199587|>,
<|"r" -> -0.461644, "i" -> 0.109868|>,
<|"r" -> -0.216081, "i" -> 0.562557|>,
<|"r" -> -0.479881, "i" -> -0.212978|>},
{<|"r" -> 0.105028, "i" -> 0.632264|>,
<|"r" -> 0.116589, "i" -> -0.490063|>,
<|"r" -> 0.463378, "i" -> 0.231656|>,
<|"r" -> -0.148665, "i" -> 0.212065|>},
{<|"r" -> 0.463253, "i" -> 0.201161|>,
<|"r" -> 0.460547, "i" -> 0.397829|>,
<|"r" -> 0.222257, "i" -> 0.0129121|>,
<|"r" -> 0.168641, "i" -> -0.544568|>},
{<|"r" -> 0.255221, "i" -> -0.364687|>,
<|"r" -> 0.191895, "i" -> -0.337437|>,
<|"r" -> -0.12278, "i" -> 0.551195|>,
<|"r" -> 0.560485, "i" -> 0.134702|>}
}
Given this, I can write
testmatrix = Join[Values[matrix], 2]`
to get a matrix, but it is a matrix of tuples. How can I get the complex number defined in each <|r -> Re[z], i -> Im[z]|>
rather than the tuples?
matrix expression-manipulation associations
$endgroup$
add a comment |
$begingroup$
I have a list of associations keyed by real and imaginary numbers, like so:
matrix = {
{<|"r" -> 0.368252, "i" -> 0.0199587|>,
<|"r" -> -0.461644, "i" -> 0.109868|>,
<|"r" -> -0.216081, "i" -> 0.562557|>,
<|"r" -> -0.479881, "i" -> -0.212978|>},
{<|"r" -> 0.105028, "i" -> 0.632264|>,
<|"r" -> 0.116589, "i" -> -0.490063|>,
<|"r" -> 0.463378, "i" -> 0.231656|>,
<|"r" -> -0.148665, "i" -> 0.212065|>},
{<|"r" -> 0.463253, "i" -> 0.201161|>,
<|"r" -> 0.460547, "i" -> 0.397829|>,
<|"r" -> 0.222257, "i" -> 0.0129121|>,
<|"r" -> 0.168641, "i" -> -0.544568|>},
{<|"r" -> 0.255221, "i" -> -0.364687|>,
<|"r" -> 0.191895, "i" -> -0.337437|>,
<|"r" -> -0.12278, "i" -> 0.551195|>,
<|"r" -> 0.560485, "i" -> 0.134702|>}
}
Given this, I can write
testmatrix = Join[Values[matrix], 2]`
to get a matrix, but it is a matrix of tuples. How can I get the complex number defined in each <|r -> Re[z], i -> Im[z]|>
rather than the tuples?
matrix expression-manipulation associations
$endgroup$
add a comment |
$begingroup$
I have a list of associations keyed by real and imaginary numbers, like so:
matrix = {
{<|"r" -> 0.368252, "i" -> 0.0199587|>,
<|"r" -> -0.461644, "i" -> 0.109868|>,
<|"r" -> -0.216081, "i" -> 0.562557|>,
<|"r" -> -0.479881, "i" -> -0.212978|>},
{<|"r" -> 0.105028, "i" -> 0.632264|>,
<|"r" -> 0.116589, "i" -> -0.490063|>,
<|"r" -> 0.463378, "i" -> 0.231656|>,
<|"r" -> -0.148665, "i" -> 0.212065|>},
{<|"r" -> 0.463253, "i" -> 0.201161|>,
<|"r" -> 0.460547, "i" -> 0.397829|>,
<|"r" -> 0.222257, "i" -> 0.0129121|>,
<|"r" -> 0.168641, "i" -> -0.544568|>},
{<|"r" -> 0.255221, "i" -> -0.364687|>,
<|"r" -> 0.191895, "i" -> -0.337437|>,
<|"r" -> -0.12278, "i" -> 0.551195|>,
<|"r" -> 0.560485, "i" -> 0.134702|>}
}
Given this, I can write
testmatrix = Join[Values[matrix], 2]`
to get a matrix, but it is a matrix of tuples. How can I get the complex number defined in each <|r -> Re[z], i -> Im[z]|>
rather than the tuples?
matrix expression-manipulation associations
$endgroup$
I have a list of associations keyed by real and imaginary numbers, like so:
matrix = {
{<|"r" -> 0.368252, "i" -> 0.0199587|>,
<|"r" -> -0.461644, "i" -> 0.109868|>,
<|"r" -> -0.216081, "i" -> 0.562557|>,
<|"r" -> -0.479881, "i" -> -0.212978|>},
{<|"r" -> 0.105028, "i" -> 0.632264|>,
<|"r" -> 0.116589, "i" -> -0.490063|>,
<|"r" -> 0.463378, "i" -> 0.231656|>,
<|"r" -> -0.148665, "i" -> 0.212065|>},
{<|"r" -> 0.463253, "i" -> 0.201161|>,
<|"r" -> 0.460547, "i" -> 0.397829|>,
<|"r" -> 0.222257, "i" -> 0.0129121|>,
<|"r" -> 0.168641, "i" -> -0.544568|>},
{<|"r" -> 0.255221, "i" -> -0.364687|>,
<|"r" -> 0.191895, "i" -> -0.337437|>,
<|"r" -> -0.12278, "i" -> 0.551195|>,
<|"r" -> 0.560485, "i" -> 0.134702|>}
}
Given this, I can write
testmatrix = Join[Values[matrix], 2]`
to get a matrix, but it is a matrix of tuples. How can I get the complex number defined in each <|r -> Re[z], i -> Im[z]|>
rather than the tuples?
matrix expression-manipulation associations
matrix expression-manipulation associations
edited 7 hours ago
MarcoB
36.6k556112
36.6k556112
asked 14 hours ago
MKFMKF
1588
1588
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Apply[Complex, matrix, {2}]
{{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},
{0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},
{0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},
{0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}
$endgroup$
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
7 hours ago
$begingroup$
TheApply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g.Complex @@ {Pi, Sqrt[2]}
.
$endgroup$
– J. M. is computer-less♦
6 hours ago
add a comment |
$begingroup$
matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]
or
Join[Values[matrix], 2].{1, I}
$endgroup$
$begingroup$
Even better:Values[matrix].{1, I}
, which preserves the matrix structure.
$endgroup$
– J. M. is computer-less♦
6 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192530%2fobtaining-a-matrix-of-complex-values-from-associations-giving-the-real-and-imagi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Apply[Complex, matrix, {2}]
{{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},
{0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},
{0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},
{0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}
$endgroup$
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
7 hours ago
$begingroup$
TheApply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g.Complex @@ {Pi, Sqrt[2]}
.
$endgroup$
– J. M. is computer-less♦
6 hours ago
add a comment |
$begingroup$
Apply[Complex, matrix, {2}]
{{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},
{0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},
{0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},
{0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}
$endgroup$
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
7 hours ago
$begingroup$
TheApply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g.Complex @@ {Pi, Sqrt[2]}
.
$endgroup$
– J. M. is computer-less♦
6 hours ago
add a comment |
$begingroup$
Apply[Complex, matrix, {2}]
{{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},
{0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},
{0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},
{0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}
$endgroup$
Apply[Complex, matrix, {2}]
{{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},
{0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},
{0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},
{0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}
answered 9 hours ago
kglrkglr
186k10203422
186k10203422
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
7 hours ago
$begingroup$
TheApply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g.Complex @@ {Pi, Sqrt[2]}
.
$endgroup$
– J. M. is computer-less♦
6 hours ago
add a comment |
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
7 hours ago
$begingroup$
TheApply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g.Complex @@ {Pi, Sqrt[2]}
.
$endgroup$
– J. M. is computer-less♦
6 hours ago
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
7 hours ago
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
7 hours ago
$begingroup$
The
Apply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g. Complex @@ {Pi, Sqrt[2]}
.$endgroup$
– J. M. is computer-less♦
6 hours ago
$begingroup$
The
Apply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g. Complex @@ {Pi, Sqrt[2]}
.$endgroup$
– J. M. is computer-less♦
6 hours ago
add a comment |
$begingroup$
matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]
or
Join[Values[matrix], 2].{1, I}
$endgroup$
$begingroup$
Even better:Values[matrix].{1, I}
, which preserves the matrix structure.
$endgroup$
– J. M. is computer-less♦
6 hours ago
add a comment |
$begingroup$
matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]
or
Join[Values[matrix], 2].{1, I}
$endgroup$
$begingroup$
Even better:Values[matrix].{1, I}
, which preserves the matrix structure.
$endgroup$
– J. M. is computer-less♦
6 hours ago
add a comment |
$begingroup$
matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]
or
Join[Values[matrix], 2].{1, I}
$endgroup$
matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]
or
Join[Values[matrix], 2].{1, I}
edited 7 hours ago
answered 14 hours ago
Henrik SchumacherHenrik Schumacher
55.3k576154
55.3k576154
$begingroup$
Even better:Values[matrix].{1, I}
, which preserves the matrix structure.
$endgroup$
– J. M. is computer-less♦
6 hours ago
add a comment |
$begingroup$
Even better:Values[matrix].{1, I}
, which preserves the matrix structure.
$endgroup$
– J. M. is computer-less♦
6 hours ago
$begingroup$
Even better:
Values[matrix].{1, I}
, which preserves the matrix structure.$endgroup$
– J. M. is computer-less♦
6 hours ago
$begingroup$
Even better:
Values[matrix].{1, I}
, which preserves the matrix structure.$endgroup$
– J. M. is computer-less♦
6 hours ago
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192530%2fobtaining-a-matrix-of-complex-values-from-associations-giving-the-real-and-imagi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown