Integral inequality of length of curveCauchy-Schwarz-like inequality of integralsAn integral inequalityHow to...
Eww, those bytes are gross
How can I deal with a significant flaw I found in my previous supervisor’s paper?
What to do when being responsible for data protection in your lab, yet advice is ignored?
What's a good word to describe a public place that looks like it wouldn't be rough?
Do my Windows system binaries contain sensitive information?
Overfitting and Underfitting
Why would the Pakistan airspace closure cancel flights not headed to Pakistan itself?
Manipulating a general length function
Inalienable or irrefutable
What is better: yes / no radio, or simple checkbox?
How to interpret this PubChem record of L-Alanine
Why did Jodrell Bank assist the Soviet Union to collect data from their spacecraft in the mid 1960's?
What is the wife of a henpecked husband called?
Why do members of Congress in committee hearings ask witnesses the same question multiple times?
Is it a fallacy if someone claims they need an explanation for every word of your argument to the point where they don't understand common terms?
Why do neural networks need so many training examples to perform?
What do you call a fact that doesn't match the settings?
Copy large no of files of specific date to another directory?
What happens if a wizard reaches level 20 but has no 3rd-level spells that they can use with the Signature Spells feature?
What to do if authors don't respond to my serious concerns about their paper?
If all harmonics are generated by plucking, how does a guitar string produce a pure frequency sound?
List of numbers giving a particular sum
What's the most convenient time of year in the USA to end the world?
A flower in a hexagon
Integral inequality of length of curve
Cauchy-Schwarz-like inequality of integralsAn integral inequalityHow to show the inequality is strict?Prove an integral inequality: $ left(int|f|^2dxright)^2le 4left(int|xf(x)|^2dxright)left(int|f'|^2dxright) $A tricky integral inequalityIntegral inequality problem (cauchy-schwarz)Is this integral inequality valid for all functions?An integral inequality concerning compositionsIntegral inequality with a strange conditionAn inequality involving integrals and square root
$begingroup$
Let $f:mathbb{R}to mathbb{R}$ be a continuously differentiable function. Prove that for any $a.bin mathbb{R}$
$$left (int_a^bsqrt{1+(f'(x))^2},dxright)^2ge (a-b)^2+(f(b)-f(a))^2$$.
I think mean value theorem kills it but can't do it ...even try Cauchy-Schwarz inequality but nothing conclution
real-analysis inequality arc-length
$endgroup$
add a comment |
$begingroup$
Let $f:mathbb{R}to mathbb{R}$ be a continuously differentiable function. Prove that for any $a.bin mathbb{R}$
$$left (int_a^bsqrt{1+(f'(x))^2},dxright)^2ge (a-b)^2+(f(b)-f(a))^2$$.
I think mean value theorem kills it but can't do it ...even try Cauchy-Schwarz inequality but nothing conclution
real-analysis inequality arc-length
$endgroup$
3
$begingroup$
the smallest distance between the two points $(a, f(a))$ and $(b, f(b))$ is the straight line distance which is your RHS (the square root of that of course but same applies to LHS ; conclude...
$endgroup$
– Conrad
16 hours ago
1
$begingroup$
@Conrad But this is exactly what is to be proved, since the LHS is the definition of arc length.
$endgroup$
– Matematleta
16 hours ago
$begingroup$
This is classic stuff - can do it locally using Taylor approximation so make the curve piecewise linear and use elementary geometry or as done in various answers with various inequalities
$endgroup$
– Conrad
13 hours ago
add a comment |
$begingroup$
Let $f:mathbb{R}to mathbb{R}$ be a continuously differentiable function. Prove that for any $a.bin mathbb{R}$
$$left (int_a^bsqrt{1+(f'(x))^2},dxright)^2ge (a-b)^2+(f(b)-f(a))^2$$.
I think mean value theorem kills it but can't do it ...even try Cauchy-Schwarz inequality but nothing conclution
real-analysis inequality arc-length
$endgroup$
Let $f:mathbb{R}to mathbb{R}$ be a continuously differentiable function. Prove that for any $a.bin mathbb{R}$
$$left (int_a^bsqrt{1+(f'(x))^2},dxright)^2ge (a-b)^2+(f(b)-f(a))^2$$.
I think mean value theorem kills it but can't do it ...even try Cauchy-Schwarz inequality but nothing conclution
real-analysis inequality arc-length
real-analysis inequality arc-length
edited 7 hours ago
Martin Sleziak
44.8k10119272
44.8k10119272
asked 17 hours ago
RAM_3RRAM_3R
616214
616214
3
$begingroup$
the smallest distance between the two points $(a, f(a))$ and $(b, f(b))$ is the straight line distance which is your RHS (the square root of that of course but same applies to LHS ; conclude...
$endgroup$
– Conrad
16 hours ago
1
$begingroup$
@Conrad But this is exactly what is to be proved, since the LHS is the definition of arc length.
$endgroup$
– Matematleta
16 hours ago
$begingroup$
This is classic stuff - can do it locally using Taylor approximation so make the curve piecewise linear and use elementary geometry or as done in various answers with various inequalities
$endgroup$
– Conrad
13 hours ago
add a comment |
3
$begingroup$
the smallest distance between the two points $(a, f(a))$ and $(b, f(b))$ is the straight line distance which is your RHS (the square root of that of course but same applies to LHS ; conclude...
$endgroup$
– Conrad
16 hours ago
1
$begingroup$
@Conrad But this is exactly what is to be proved, since the LHS is the definition of arc length.
$endgroup$
– Matematleta
16 hours ago
$begingroup$
This is classic stuff - can do it locally using Taylor approximation so make the curve piecewise linear and use elementary geometry or as done in various answers with various inequalities
$endgroup$
– Conrad
13 hours ago
3
3
$begingroup$
the smallest distance between the two points $(a, f(a))$ and $(b, f(b))$ is the straight line distance which is your RHS (the square root of that of course but same applies to LHS ; conclude...
$endgroup$
– Conrad
16 hours ago
$begingroup$
the smallest distance between the two points $(a, f(a))$ and $(b, f(b))$ is the straight line distance which is your RHS (the square root of that of course but same applies to LHS ; conclude...
$endgroup$
– Conrad
16 hours ago
1
1
$begingroup$
@Conrad But this is exactly what is to be proved, since the LHS is the definition of arc length.
$endgroup$
– Matematleta
16 hours ago
$begingroup$
@Conrad But this is exactly what is to be proved, since the LHS is the definition of arc length.
$endgroup$
– Matematleta
16 hours ago
$begingroup$
This is classic stuff - can do it locally using Taylor approximation so make the curve piecewise linear and use elementary geometry or as done in various answers with various inequalities
$endgroup$
– Conrad
13 hours ago
$begingroup$
This is classic stuff - can do it locally using Taylor approximation so make the curve piecewise linear and use elementary geometry or as done in various answers with various inequalities
$endgroup$
– Conrad
13 hours ago
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Notice that the function $y mapsto sqrt{1+y^2}$ is strictly convex. So by the Jensen's inequality,
$$ frac{1}{b-a} int_{a}^{b} sqrt{1 + f'(x)^2} , mathrm{d}x geq sqrt{1 + left(frac{1}{b-a}int_{a}^{b} f'(x) , mathrm{d}xright)^2} = sqrt{1 + left(frac{f(b) - f(a)}{b-a} right)^2}. $$
Multiplying both sides by $b-a$ and squaring proves the desired inequality. Moreover, by the strict convexity, the equality holds if and only if $f'$ is constant over $[a, b]$.
$endgroup$
1
$begingroup$
This really nice!
$endgroup$
– Nastar
13 hours ago
add a comment |
$begingroup$
Note that for every complex valued integrable function $phi :[a,b]to Bbb C$, it holds that
$$
left|int_a^b phi(x) dxright|le int_a^b|phi(x)| dx.
$$ Let $phi(x)=1+if'(x)$. Then we can see that
$$begin{align*}
left|int_a^b phi(x) dxright|&=left|(b-a)+i(f(b)-f(a))right|\&=sqrt{(b-a)^2+(f(b)-f(a))^2}
end{align*}$$ and
$$
int_a^b|phi(x)| dx=int_a^b sqrt{1+(f'(x))^2} dx.
$$ Now, the desired inequality follows.
Note: The equality holds when $text{arg}(phi(x))$ is constant, that is, $frac{f'(x)}{1}=f'(x)$ is constant.
$endgroup$
1
$begingroup$
(+1) Amazing, this should the accepted answer! Anyway, is there any reason to work with $mathbb{C}$ rather than $mathbb{R}^2$ with $phi(x) = gamma'(x)$ and $gamma(x) = (x, f(x))$?
$endgroup$
– Sangchul Lee
13 hours ago
$begingroup$
Umm, sorry, I see no specific reason, since both are essentially the same version of the triangle inequality in integral form. But I just prefered $Bbb C$-version because it can be easily derived from the real triangle inequality; if $f$ is real-valued, integrable, $pm int_a^b fle int_a^b |f|$. Thank you!
$endgroup$
– Song
13 hours ago
1
$begingroup$
This is slick. I wish I could upvote this answer twice....
$endgroup$
– Matematleta
11 hours ago
add a comment |
$begingroup$
An easy way to do this is to note that since distance is invariant under rotations, without loss of generality, we may assume that $f(a)=f(b).$ And now, since $sqrt{1-f'(x)}ge 0$ on $[a,b]$, the function in $C^1([a,b])$ that minimizes the integral coincides with the function $f$ that minimizes the integrand, and clearly, this happens when $f'(x)=0$ for all $xin [a,b].$ That is, when $f$ is constant on $[a,b].$ Then, $f(x)=f(a)$ and the result follows.
If you want to do this without the wlog assumption, then argue as follows:
Let $epsilon>0, fin C^1([a,b])$ and choose a partition $P={a,x_1,cdots,x_{n-2},b}$.
The length of the polygonal path obtained by joining the points
$(x_i,f(x_i))$ is $sum_i sqrt{(Delta x_i)^2+(Delta y_i)^2}$ and this is clearly $ge (b-a)^2+(f(b)-f(a))^2$. (You can make this precise by using an induction argument on $n$.)
And this is true for $textit{any}$ partition $P$.
But the above sum is also $sum_isqrt{1+frac{Delta y_i}{Delta x_i}}Delta x_i $ and now, upon applying the MVT, we see that what we have is a Riemann sum for $sqrt{1+f'(x)}$.
To finish, choose $P$ such that $left |int^b_asqrt{1+f'(x)}dx- sum_isqrt{1+f'(c_i)}Delta x_i right |<epsilon $. (The $c_i$ are the numbers $x_i<c_i<x_{i-1}$ obtained from the MVT). Then,
$(b-a)^2+(f(b)-f(a))^2le sum_isqrt{1+f'(c)}Delta x_i<int^b_asqrt{1+f'(x)}+epsilon.$
Since $epsilon$ is arbitrary, the result follows.
For a slick way to do this, use a variational argument: assuming a minimum $f$ exists, consider $f+tphi$ where $t$ is a real parameter and $phi$ is arbitrary $C^1([a,b])$.
Subsitute it into the integral:
$l(t)=int_a^b sqrt{1+(f'+tphi')^2}dx$.
Since $f$ minimizes this integral, the derivative of $l$ at $t=0$ must be equal to zero. Then,
$0=l'(0)= int_a^b dfrac{f'phi'}{sqrt{1+(f')^2}}dx$.
After an integration by parts, we get
$dfrac{f'}{sqrt{1+(f')^2}} = c$ for some constant $cin mathbb R,$ from which it follows that $f'=c$. And this means, of course, that the graph of $f$ is a straight line connecting $(a,f(a))$ and $(b,f(b)).$ The desired inequality follows.
$endgroup$
add a comment |
$begingroup$
Expanding upon what @Conrad said, the shortest distance between two points is the distance of the line between, which is what your RHS is measuring (it is actually the square of the distance from $(a, f(a))$ to $(b, f(b))$.
Now if we assume $left (int_a^bsqrt{1+(f'(x))^2},dxright)^2 < (a-b)^2+(f(b)-f(a))^2$, then we have contradicted the fact that that the shortest distance between $(a, f(a))$ and $(b, f(b))$ is $sqrt{(a-b)^2+(f(b)-f(a))^2}$. Therefore, it must be the case that $left (int_a^bsqrt{1+(f'(x))^2},dxright)^2 geq (a-b)^2+(f(b)-f(a))^2$
New contributor
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3132801%2fintegral-inequality-of-length-of-curve%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Notice that the function $y mapsto sqrt{1+y^2}$ is strictly convex. So by the Jensen's inequality,
$$ frac{1}{b-a} int_{a}^{b} sqrt{1 + f'(x)^2} , mathrm{d}x geq sqrt{1 + left(frac{1}{b-a}int_{a}^{b} f'(x) , mathrm{d}xright)^2} = sqrt{1 + left(frac{f(b) - f(a)}{b-a} right)^2}. $$
Multiplying both sides by $b-a$ and squaring proves the desired inequality. Moreover, by the strict convexity, the equality holds if and only if $f'$ is constant over $[a, b]$.
$endgroup$
1
$begingroup$
This really nice!
$endgroup$
– Nastar
13 hours ago
add a comment |
$begingroup$
Notice that the function $y mapsto sqrt{1+y^2}$ is strictly convex. So by the Jensen's inequality,
$$ frac{1}{b-a} int_{a}^{b} sqrt{1 + f'(x)^2} , mathrm{d}x geq sqrt{1 + left(frac{1}{b-a}int_{a}^{b} f'(x) , mathrm{d}xright)^2} = sqrt{1 + left(frac{f(b) - f(a)}{b-a} right)^2}. $$
Multiplying both sides by $b-a$ and squaring proves the desired inequality. Moreover, by the strict convexity, the equality holds if and only if $f'$ is constant over $[a, b]$.
$endgroup$
1
$begingroup$
This really nice!
$endgroup$
– Nastar
13 hours ago
add a comment |
$begingroup$
Notice that the function $y mapsto sqrt{1+y^2}$ is strictly convex. So by the Jensen's inequality,
$$ frac{1}{b-a} int_{a}^{b} sqrt{1 + f'(x)^2} , mathrm{d}x geq sqrt{1 + left(frac{1}{b-a}int_{a}^{b} f'(x) , mathrm{d}xright)^2} = sqrt{1 + left(frac{f(b) - f(a)}{b-a} right)^2}. $$
Multiplying both sides by $b-a$ and squaring proves the desired inequality. Moreover, by the strict convexity, the equality holds if and only if $f'$ is constant over $[a, b]$.
$endgroup$
Notice that the function $y mapsto sqrt{1+y^2}$ is strictly convex. So by the Jensen's inequality,
$$ frac{1}{b-a} int_{a}^{b} sqrt{1 + f'(x)^2} , mathrm{d}x geq sqrt{1 + left(frac{1}{b-a}int_{a}^{b} f'(x) , mathrm{d}xright)^2} = sqrt{1 + left(frac{f(b) - f(a)}{b-a} right)^2}. $$
Multiplying both sides by $b-a$ and squaring proves the desired inequality. Moreover, by the strict convexity, the equality holds if and only if $f'$ is constant over $[a, b]$.
answered 14 hours ago
Sangchul LeeSangchul Lee
95.3k12170278
95.3k12170278
1
$begingroup$
This really nice!
$endgroup$
– Nastar
13 hours ago
add a comment |
1
$begingroup$
This really nice!
$endgroup$
– Nastar
13 hours ago
1
1
$begingroup$
This really nice!
$endgroup$
– Nastar
13 hours ago
$begingroup$
This really nice!
$endgroup$
– Nastar
13 hours ago
add a comment |
$begingroup$
Note that for every complex valued integrable function $phi :[a,b]to Bbb C$, it holds that
$$
left|int_a^b phi(x) dxright|le int_a^b|phi(x)| dx.
$$ Let $phi(x)=1+if'(x)$. Then we can see that
$$begin{align*}
left|int_a^b phi(x) dxright|&=left|(b-a)+i(f(b)-f(a))right|\&=sqrt{(b-a)^2+(f(b)-f(a))^2}
end{align*}$$ and
$$
int_a^b|phi(x)| dx=int_a^b sqrt{1+(f'(x))^2} dx.
$$ Now, the desired inequality follows.
Note: The equality holds when $text{arg}(phi(x))$ is constant, that is, $frac{f'(x)}{1}=f'(x)$ is constant.
$endgroup$
1
$begingroup$
(+1) Amazing, this should the accepted answer! Anyway, is there any reason to work with $mathbb{C}$ rather than $mathbb{R}^2$ with $phi(x) = gamma'(x)$ and $gamma(x) = (x, f(x))$?
$endgroup$
– Sangchul Lee
13 hours ago
$begingroup$
Umm, sorry, I see no specific reason, since both are essentially the same version of the triangle inequality in integral form. But I just prefered $Bbb C$-version because it can be easily derived from the real triangle inequality; if $f$ is real-valued, integrable, $pm int_a^b fle int_a^b |f|$. Thank you!
$endgroup$
– Song
13 hours ago
1
$begingroup$
This is slick. I wish I could upvote this answer twice....
$endgroup$
– Matematleta
11 hours ago
add a comment |
$begingroup$
Note that for every complex valued integrable function $phi :[a,b]to Bbb C$, it holds that
$$
left|int_a^b phi(x) dxright|le int_a^b|phi(x)| dx.
$$ Let $phi(x)=1+if'(x)$. Then we can see that
$$begin{align*}
left|int_a^b phi(x) dxright|&=left|(b-a)+i(f(b)-f(a))right|\&=sqrt{(b-a)^2+(f(b)-f(a))^2}
end{align*}$$ and
$$
int_a^b|phi(x)| dx=int_a^b sqrt{1+(f'(x))^2} dx.
$$ Now, the desired inequality follows.
Note: The equality holds when $text{arg}(phi(x))$ is constant, that is, $frac{f'(x)}{1}=f'(x)$ is constant.
$endgroup$
1
$begingroup$
(+1) Amazing, this should the accepted answer! Anyway, is there any reason to work with $mathbb{C}$ rather than $mathbb{R}^2$ with $phi(x) = gamma'(x)$ and $gamma(x) = (x, f(x))$?
$endgroup$
– Sangchul Lee
13 hours ago
$begingroup$
Umm, sorry, I see no specific reason, since both are essentially the same version of the triangle inequality in integral form. But I just prefered $Bbb C$-version because it can be easily derived from the real triangle inequality; if $f$ is real-valued, integrable, $pm int_a^b fle int_a^b |f|$. Thank you!
$endgroup$
– Song
13 hours ago
1
$begingroup$
This is slick. I wish I could upvote this answer twice....
$endgroup$
– Matematleta
11 hours ago
add a comment |
$begingroup$
Note that for every complex valued integrable function $phi :[a,b]to Bbb C$, it holds that
$$
left|int_a^b phi(x) dxright|le int_a^b|phi(x)| dx.
$$ Let $phi(x)=1+if'(x)$. Then we can see that
$$begin{align*}
left|int_a^b phi(x) dxright|&=left|(b-a)+i(f(b)-f(a))right|\&=sqrt{(b-a)^2+(f(b)-f(a))^2}
end{align*}$$ and
$$
int_a^b|phi(x)| dx=int_a^b sqrt{1+(f'(x))^2} dx.
$$ Now, the desired inequality follows.
Note: The equality holds when $text{arg}(phi(x))$ is constant, that is, $frac{f'(x)}{1}=f'(x)$ is constant.
$endgroup$
Note that for every complex valued integrable function $phi :[a,b]to Bbb C$, it holds that
$$
left|int_a^b phi(x) dxright|le int_a^b|phi(x)| dx.
$$ Let $phi(x)=1+if'(x)$. Then we can see that
$$begin{align*}
left|int_a^b phi(x) dxright|&=left|(b-a)+i(f(b)-f(a))right|\&=sqrt{(b-a)^2+(f(b)-f(a))^2}
end{align*}$$ and
$$
int_a^b|phi(x)| dx=int_a^b sqrt{1+(f'(x))^2} dx.
$$ Now, the desired inequality follows.
Note: The equality holds when $text{arg}(phi(x))$ is constant, that is, $frac{f'(x)}{1}=f'(x)$ is constant.
edited 6 hours ago
answered 13 hours ago
SongSong
16.3k1740
16.3k1740
1
$begingroup$
(+1) Amazing, this should the accepted answer! Anyway, is there any reason to work with $mathbb{C}$ rather than $mathbb{R}^2$ with $phi(x) = gamma'(x)$ and $gamma(x) = (x, f(x))$?
$endgroup$
– Sangchul Lee
13 hours ago
$begingroup$
Umm, sorry, I see no specific reason, since both are essentially the same version of the triangle inequality in integral form. But I just prefered $Bbb C$-version because it can be easily derived from the real triangle inequality; if $f$ is real-valued, integrable, $pm int_a^b fle int_a^b |f|$. Thank you!
$endgroup$
– Song
13 hours ago
1
$begingroup$
This is slick. I wish I could upvote this answer twice....
$endgroup$
– Matematleta
11 hours ago
add a comment |
1
$begingroup$
(+1) Amazing, this should the accepted answer! Anyway, is there any reason to work with $mathbb{C}$ rather than $mathbb{R}^2$ with $phi(x) = gamma'(x)$ and $gamma(x) = (x, f(x))$?
$endgroup$
– Sangchul Lee
13 hours ago
$begingroup$
Umm, sorry, I see no specific reason, since both are essentially the same version of the triangle inequality in integral form. But I just prefered $Bbb C$-version because it can be easily derived from the real triangle inequality; if $f$ is real-valued, integrable, $pm int_a^b fle int_a^b |f|$. Thank you!
$endgroup$
– Song
13 hours ago
1
$begingroup$
This is slick. I wish I could upvote this answer twice....
$endgroup$
– Matematleta
11 hours ago
1
1
$begingroup$
(+1) Amazing, this should the accepted answer! Anyway, is there any reason to work with $mathbb{C}$ rather than $mathbb{R}^2$ with $phi(x) = gamma'(x)$ and $gamma(x) = (x, f(x))$?
$endgroup$
– Sangchul Lee
13 hours ago
$begingroup$
(+1) Amazing, this should the accepted answer! Anyway, is there any reason to work with $mathbb{C}$ rather than $mathbb{R}^2$ with $phi(x) = gamma'(x)$ and $gamma(x) = (x, f(x))$?
$endgroup$
– Sangchul Lee
13 hours ago
$begingroup$
Umm, sorry, I see no specific reason, since both are essentially the same version of the triangle inequality in integral form. But I just prefered $Bbb C$-version because it can be easily derived from the real triangle inequality; if $f$ is real-valued, integrable, $pm int_a^b fle int_a^b |f|$. Thank you!
$endgroup$
– Song
13 hours ago
$begingroup$
Umm, sorry, I see no specific reason, since both are essentially the same version of the triangle inequality in integral form. But I just prefered $Bbb C$-version because it can be easily derived from the real triangle inequality; if $f$ is real-valued, integrable, $pm int_a^b fle int_a^b |f|$. Thank you!
$endgroup$
– Song
13 hours ago
1
1
$begingroup$
This is slick. I wish I could upvote this answer twice....
$endgroup$
– Matematleta
11 hours ago
$begingroup$
This is slick. I wish I could upvote this answer twice....
$endgroup$
– Matematleta
11 hours ago
add a comment |
$begingroup$
An easy way to do this is to note that since distance is invariant under rotations, without loss of generality, we may assume that $f(a)=f(b).$ And now, since $sqrt{1-f'(x)}ge 0$ on $[a,b]$, the function in $C^1([a,b])$ that minimizes the integral coincides with the function $f$ that minimizes the integrand, and clearly, this happens when $f'(x)=0$ for all $xin [a,b].$ That is, when $f$ is constant on $[a,b].$ Then, $f(x)=f(a)$ and the result follows.
If you want to do this without the wlog assumption, then argue as follows:
Let $epsilon>0, fin C^1([a,b])$ and choose a partition $P={a,x_1,cdots,x_{n-2},b}$.
The length of the polygonal path obtained by joining the points
$(x_i,f(x_i))$ is $sum_i sqrt{(Delta x_i)^2+(Delta y_i)^2}$ and this is clearly $ge (b-a)^2+(f(b)-f(a))^2$. (You can make this precise by using an induction argument on $n$.)
And this is true for $textit{any}$ partition $P$.
But the above sum is also $sum_isqrt{1+frac{Delta y_i}{Delta x_i}}Delta x_i $ and now, upon applying the MVT, we see that what we have is a Riemann sum for $sqrt{1+f'(x)}$.
To finish, choose $P$ such that $left |int^b_asqrt{1+f'(x)}dx- sum_isqrt{1+f'(c_i)}Delta x_i right |<epsilon $. (The $c_i$ are the numbers $x_i<c_i<x_{i-1}$ obtained from the MVT). Then,
$(b-a)^2+(f(b)-f(a))^2le sum_isqrt{1+f'(c)}Delta x_i<int^b_asqrt{1+f'(x)}+epsilon.$
Since $epsilon$ is arbitrary, the result follows.
For a slick way to do this, use a variational argument: assuming a minimum $f$ exists, consider $f+tphi$ where $t$ is a real parameter and $phi$ is arbitrary $C^1([a,b])$.
Subsitute it into the integral:
$l(t)=int_a^b sqrt{1+(f'+tphi')^2}dx$.
Since $f$ minimizes this integral, the derivative of $l$ at $t=0$ must be equal to zero. Then,
$0=l'(0)= int_a^b dfrac{f'phi'}{sqrt{1+(f')^2}}dx$.
After an integration by parts, we get
$dfrac{f'}{sqrt{1+(f')^2}} = c$ for some constant $cin mathbb R,$ from which it follows that $f'=c$. And this means, of course, that the graph of $f$ is a straight line connecting $(a,f(a))$ and $(b,f(b)).$ The desired inequality follows.
$endgroup$
add a comment |
$begingroup$
An easy way to do this is to note that since distance is invariant under rotations, without loss of generality, we may assume that $f(a)=f(b).$ And now, since $sqrt{1-f'(x)}ge 0$ on $[a,b]$, the function in $C^1([a,b])$ that minimizes the integral coincides with the function $f$ that minimizes the integrand, and clearly, this happens when $f'(x)=0$ for all $xin [a,b].$ That is, when $f$ is constant on $[a,b].$ Then, $f(x)=f(a)$ and the result follows.
If you want to do this without the wlog assumption, then argue as follows:
Let $epsilon>0, fin C^1([a,b])$ and choose a partition $P={a,x_1,cdots,x_{n-2},b}$.
The length of the polygonal path obtained by joining the points
$(x_i,f(x_i))$ is $sum_i sqrt{(Delta x_i)^2+(Delta y_i)^2}$ and this is clearly $ge (b-a)^2+(f(b)-f(a))^2$. (You can make this precise by using an induction argument on $n$.)
And this is true for $textit{any}$ partition $P$.
But the above sum is also $sum_isqrt{1+frac{Delta y_i}{Delta x_i}}Delta x_i $ and now, upon applying the MVT, we see that what we have is a Riemann sum for $sqrt{1+f'(x)}$.
To finish, choose $P$ such that $left |int^b_asqrt{1+f'(x)}dx- sum_isqrt{1+f'(c_i)}Delta x_i right |<epsilon $. (The $c_i$ are the numbers $x_i<c_i<x_{i-1}$ obtained from the MVT). Then,
$(b-a)^2+(f(b)-f(a))^2le sum_isqrt{1+f'(c)}Delta x_i<int^b_asqrt{1+f'(x)}+epsilon.$
Since $epsilon$ is arbitrary, the result follows.
For a slick way to do this, use a variational argument: assuming a minimum $f$ exists, consider $f+tphi$ where $t$ is a real parameter and $phi$ is arbitrary $C^1([a,b])$.
Subsitute it into the integral:
$l(t)=int_a^b sqrt{1+(f'+tphi')^2}dx$.
Since $f$ minimizes this integral, the derivative of $l$ at $t=0$ must be equal to zero. Then,
$0=l'(0)= int_a^b dfrac{f'phi'}{sqrt{1+(f')^2}}dx$.
After an integration by parts, we get
$dfrac{f'}{sqrt{1+(f')^2}} = c$ for some constant $cin mathbb R,$ from which it follows that $f'=c$. And this means, of course, that the graph of $f$ is a straight line connecting $(a,f(a))$ and $(b,f(b)).$ The desired inequality follows.
$endgroup$
add a comment |
$begingroup$
An easy way to do this is to note that since distance is invariant under rotations, without loss of generality, we may assume that $f(a)=f(b).$ And now, since $sqrt{1-f'(x)}ge 0$ on $[a,b]$, the function in $C^1([a,b])$ that minimizes the integral coincides with the function $f$ that minimizes the integrand, and clearly, this happens when $f'(x)=0$ for all $xin [a,b].$ That is, when $f$ is constant on $[a,b].$ Then, $f(x)=f(a)$ and the result follows.
If you want to do this without the wlog assumption, then argue as follows:
Let $epsilon>0, fin C^1([a,b])$ and choose a partition $P={a,x_1,cdots,x_{n-2},b}$.
The length of the polygonal path obtained by joining the points
$(x_i,f(x_i))$ is $sum_i sqrt{(Delta x_i)^2+(Delta y_i)^2}$ and this is clearly $ge (b-a)^2+(f(b)-f(a))^2$. (You can make this precise by using an induction argument on $n$.)
And this is true for $textit{any}$ partition $P$.
But the above sum is also $sum_isqrt{1+frac{Delta y_i}{Delta x_i}}Delta x_i $ and now, upon applying the MVT, we see that what we have is a Riemann sum for $sqrt{1+f'(x)}$.
To finish, choose $P$ such that $left |int^b_asqrt{1+f'(x)}dx- sum_isqrt{1+f'(c_i)}Delta x_i right |<epsilon $. (The $c_i$ are the numbers $x_i<c_i<x_{i-1}$ obtained from the MVT). Then,
$(b-a)^2+(f(b)-f(a))^2le sum_isqrt{1+f'(c)}Delta x_i<int^b_asqrt{1+f'(x)}+epsilon.$
Since $epsilon$ is arbitrary, the result follows.
For a slick way to do this, use a variational argument: assuming a minimum $f$ exists, consider $f+tphi$ where $t$ is a real parameter and $phi$ is arbitrary $C^1([a,b])$.
Subsitute it into the integral:
$l(t)=int_a^b sqrt{1+(f'+tphi')^2}dx$.
Since $f$ minimizes this integral, the derivative of $l$ at $t=0$ must be equal to zero. Then,
$0=l'(0)= int_a^b dfrac{f'phi'}{sqrt{1+(f')^2}}dx$.
After an integration by parts, we get
$dfrac{f'}{sqrt{1+(f')^2}} = c$ for some constant $cin mathbb R,$ from which it follows that $f'=c$. And this means, of course, that the graph of $f$ is a straight line connecting $(a,f(a))$ and $(b,f(b)).$ The desired inequality follows.
$endgroup$
An easy way to do this is to note that since distance is invariant under rotations, without loss of generality, we may assume that $f(a)=f(b).$ And now, since $sqrt{1-f'(x)}ge 0$ on $[a,b]$, the function in $C^1([a,b])$ that minimizes the integral coincides with the function $f$ that minimizes the integrand, and clearly, this happens when $f'(x)=0$ for all $xin [a,b].$ That is, when $f$ is constant on $[a,b].$ Then, $f(x)=f(a)$ and the result follows.
If you want to do this without the wlog assumption, then argue as follows:
Let $epsilon>0, fin C^1([a,b])$ and choose a partition $P={a,x_1,cdots,x_{n-2},b}$.
The length of the polygonal path obtained by joining the points
$(x_i,f(x_i))$ is $sum_i sqrt{(Delta x_i)^2+(Delta y_i)^2}$ and this is clearly $ge (b-a)^2+(f(b)-f(a))^2$. (You can make this precise by using an induction argument on $n$.)
And this is true for $textit{any}$ partition $P$.
But the above sum is also $sum_isqrt{1+frac{Delta y_i}{Delta x_i}}Delta x_i $ and now, upon applying the MVT, we see that what we have is a Riemann sum for $sqrt{1+f'(x)}$.
To finish, choose $P$ such that $left |int^b_asqrt{1+f'(x)}dx- sum_isqrt{1+f'(c_i)}Delta x_i right |<epsilon $. (The $c_i$ are the numbers $x_i<c_i<x_{i-1}$ obtained from the MVT). Then,
$(b-a)^2+(f(b)-f(a))^2le sum_isqrt{1+f'(c)}Delta x_i<int^b_asqrt{1+f'(x)}+epsilon.$
Since $epsilon$ is arbitrary, the result follows.
For a slick way to do this, use a variational argument: assuming a minimum $f$ exists, consider $f+tphi$ where $t$ is a real parameter and $phi$ is arbitrary $C^1([a,b])$.
Subsitute it into the integral:
$l(t)=int_a^b sqrt{1+(f'+tphi')^2}dx$.
Since $f$ minimizes this integral, the derivative of $l$ at $t=0$ must be equal to zero. Then,
$0=l'(0)= int_a^b dfrac{f'phi'}{sqrt{1+(f')^2}}dx$.
After an integration by parts, we get
$dfrac{f'}{sqrt{1+(f')^2}} = c$ for some constant $cin mathbb R,$ from which it follows that $f'=c$. And this means, of course, that the graph of $f$ is a straight line connecting $(a,f(a))$ and $(b,f(b)).$ The desired inequality follows.
edited 14 hours ago
answered 15 hours ago
MatematletaMatematleta
11.5k2920
11.5k2920
add a comment |
add a comment |
$begingroup$
Expanding upon what @Conrad said, the shortest distance between two points is the distance of the line between, which is what your RHS is measuring (it is actually the square of the distance from $(a, f(a))$ to $(b, f(b))$.
Now if we assume $left (int_a^bsqrt{1+(f'(x))^2},dxright)^2 < (a-b)^2+(f(b)-f(a))^2$, then we have contradicted the fact that that the shortest distance between $(a, f(a))$ and $(b, f(b))$ is $sqrt{(a-b)^2+(f(b)-f(a))^2}$. Therefore, it must be the case that $left (int_a^bsqrt{1+(f'(x))^2},dxright)^2 geq (a-b)^2+(f(b)-f(a))^2$
New contributor
$endgroup$
add a comment |
$begingroup$
Expanding upon what @Conrad said, the shortest distance between two points is the distance of the line between, which is what your RHS is measuring (it is actually the square of the distance from $(a, f(a))$ to $(b, f(b))$.
Now if we assume $left (int_a^bsqrt{1+(f'(x))^2},dxright)^2 < (a-b)^2+(f(b)-f(a))^2$, then we have contradicted the fact that that the shortest distance between $(a, f(a))$ and $(b, f(b))$ is $sqrt{(a-b)^2+(f(b)-f(a))^2}$. Therefore, it must be the case that $left (int_a^bsqrt{1+(f'(x))^2},dxright)^2 geq (a-b)^2+(f(b)-f(a))^2$
New contributor
$endgroup$
add a comment |
$begingroup$
Expanding upon what @Conrad said, the shortest distance between two points is the distance of the line between, which is what your RHS is measuring (it is actually the square of the distance from $(a, f(a))$ to $(b, f(b))$.
Now if we assume $left (int_a^bsqrt{1+(f'(x))^2},dxright)^2 < (a-b)^2+(f(b)-f(a))^2$, then we have contradicted the fact that that the shortest distance between $(a, f(a))$ and $(b, f(b))$ is $sqrt{(a-b)^2+(f(b)-f(a))^2}$. Therefore, it must be the case that $left (int_a^bsqrt{1+(f'(x))^2},dxright)^2 geq (a-b)^2+(f(b)-f(a))^2$
New contributor
$endgroup$
Expanding upon what @Conrad said, the shortest distance between two points is the distance of the line between, which is what your RHS is measuring (it is actually the square of the distance from $(a, f(a))$ to $(b, f(b))$.
Now if we assume $left (int_a^bsqrt{1+(f'(x))^2},dxright)^2 < (a-b)^2+(f(b)-f(a))^2$, then we have contradicted the fact that that the shortest distance between $(a, f(a))$ and $(b, f(b))$ is $sqrt{(a-b)^2+(f(b)-f(a))^2}$. Therefore, it must be the case that $left (int_a^bsqrt{1+(f'(x))^2},dxright)^2 geq (a-b)^2+(f(b)-f(a))^2$
New contributor
New contributor
answered 16 hours ago
se2018se2018
873
873
New contributor
New contributor
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3132801%2fintegral-inequality-of-length-of-curve%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
the smallest distance between the two points $(a, f(a))$ and $(b, f(b))$ is the straight line distance which is your RHS (the square root of that of course but same applies to LHS ; conclude...
$endgroup$
– Conrad
16 hours ago
1
$begingroup$
@Conrad But this is exactly what is to be proved, since the LHS is the definition of arc length.
$endgroup$
– Matematleta
16 hours ago
$begingroup$
This is classic stuff - can do it locally using Taylor approximation so make the curve piecewise linear and use elementary geometry or as done in various answers with various inequalities
$endgroup$
– Conrad
13 hours ago